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I

INTRODUCTION i g

This is the third in a series of summary reports on the general subject of
electromagnetic ard acoustical scattering by certain bodies of simple shape. The

choice of the spheroid as next in line after the sphere and cone is suggested by

several considerations. The ellipsoid, of which the spheroid is a specialization, is.}.

the only remaining finite body for which 'exact' analytical solutions of boundary
value problems involving the vector and scalar wave equations are at all feasible,

and for the general ellipsoid these are of such complexity and tedium that few in-

vestigators have had the requisite combination of motivation and temerity to attack. |

them. The attractions which the spheroid holds for the analyst are thus evident.
Not only does it afford a generalization of all the existing work on the sphere, but
the presence of an additional independent parameter offers a means of developing
entirely new approximate {echniques. Furthermore, the wide range of forms which
can be approximated reasonably well by a spheroid includes many which are of vital
interest in various fields.

The two types of spheroid, prolate and oblate, are from an exact analytical
standpoint nearly identical, to the extent that, given an exact solution for one body,

the corresponding solution for the other is almost trivially obtainable, at least in

terms of a corresponding set of special functions, However, the prolate formn
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| seems to predominate in the literature, partly because its limiting conﬁguration is
a thin finite rod, which is the most elementary form for an antenna. The advent of
radar and the essentially prolate form of many aerodynamically efficient shapes
‘Inaturally provided strong motivation for the development of this branch of the family.
In the extremes of eccentricity the two forms are entirely distinct, as are the
associated physical phenomena and appropriate analytical approaches, so that the

‘ oblate spheroid has a sufficiently separate entity to warrant individual consideration
in a later report.

Perhaps the first problem which presents itself in the construction of a report of
:this nature is that of how much or what to include. In the cases treated previously
the voiume of literature was such that a serious problem of selection and emphasis
was incurred. In the present case the volume is not so overwhelming, and this
produces the initial dilemma of whether or not to try to include everything, at least
in some degree of coverage. {One is reminded of the Englishman of a bygone era
who purportedly remarked of the turkey that it was a most inconvenient sized bird—
a little too much for one man and not quite enough for two.,) The somewhat inordinate
length of what follovs is the result of a leaning toward the positive horn. Some sort
of compromise is, however, inevitabie and an element of arbitrariness is hound to
enter at some poin- . Thus we will limit our consideration in general to problems
of diffraction or scattering where the source of energy is exterior to the scatterer

(one exception is the cace of a poiat dipole located at the tip of a spheroid, which is
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immediately obtainable from a more general form). Even und;er this restriction the
problems of accumulation and editing are non-trivial, and it is qgite possible, not to
say probable, that due to imperfect information or inadvertent bias some pertinent
and significant work has been slighted. If such be the case, all due apologies are
hereby offered and amendments invited.

Another question which must be faced at the outset is the nature of the objectives
of a compendium of this type. Certainly it cannot be expected to supplant the
original sources completely, and as a mere catalog of these its purpose might best
be served by brevity and reduction to concise statements of conditions and results.
On the other hand, in the emergence and analysis of new problems, conditions and
results of the old are often of little utility, and the primary interest centers on
principles and techniques. It thus appears necessary to discuss these at sufficient
length to give a fairly comprehensive picture of the state of the art. At any rate, the
question of the optimum degice of detail to present is an eternal and rather delicate
one, and in a treatise of this length the maintenance of consistency in this respect
is not easy. It is hoped that whatever its limitations, the account which follows will
serve s a reasonably complete and convenient guide to existing solutions and as a
catalyst in the development of new ones.

An adequate historical survey of the spheroid problem, complete to the date of
its publication, is contained in Flammer's treatise on Spheroidal Wave Functions

(1957). Since then several important advances have been made, notably in the
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) ;pprdxiﬁthé or asymptotic theories for high and low frequencies. In the former
) :;aqge\zar‘e-:tﬁe geometrical approach of Levy and Keller (1959) and the asymptotic
;sdlqtiqns .of Kazarinoff and Ritt (1959) for the not-too-thin body, and of Goodrich and

“|Kazarinoff (1963) for the thin one. In the latter range is the work of Senior (1964),

- who has-also given a comprehensive discussion of the convergence properties of the

iibivx;,f;fequehcy series in general (Senior, 1961). Also of interest are the vector
%sglntigns’,,‘fpr*‘wéak'géatterers given by Shatilov (1960) and Ikeda (1963), which might
‘ ;ie:ggpsid?red extéésions of the scalar solution of Montroll and Hart (1951). Despite
. itzyege:« cdhtnibiitibns; however, there is much to ke done before the spheroid problem
P é::agn.be deemed as well understood as that of the sphere. Since the work of Schultz
kl950) and the computations based on this by Siegel et al (1956), virtually noprogress
: has been made in the solution of the vector problem in the resonance region. All

: ;existing techniques either break down completely or become prohibitively difficult

: or tedious in this region, and the need for a totally new approach becomes more and

‘|more apparent. Asymptotic solutions which hold for all eccentricities are still

lacking, though it seems possible that the methods already developed might be ex-
tended or modified to cover the entire range. Experimental data are also strangely
scarce, not only in the resonance region but at all frequencies, The few curves and
points which have been assembled here are the meager fruit of an intensive litera-

ture search, and include some unpublished data as well, e.g. certain data obtained
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at the Ohio State University Antenna Laboratory and at Cornell Aeronautical
Laboratory.

One of the principal headaches involved in the general speroid probiem is the
necessity of dealing with a distinctive set of special functions, known logically enougﬂ
as spheroidal functions. These have investigated quite thoroughly by several authors
and are now fairly extensively tabulated, but since their properties depend on an
additional parameter as compared with the spherical functions, and since there are
no usable recurrence relations, the manipulation and computation of these functions
is inevitably a nuisance. The first section of the next chapter deals at some length
with these functions in an effort (perhaps futile) to make them appear less formidable
to the uninitiated and thus facilitate the absorption of the accounts whick follow. A
catalog of the existing numerical tables, listing the parameter ranges znd indices
covered, is given in the Appendix. Another source of grief and frustration is the
wide variety of notations rampant in the literature. Little can be done at this stage
to standardize the notation in long-since-published works, but at least we can give
a complete account and comparison of two of the most common systems and refer
the reader to a fairly adequate table of these and the rest which appears in Fiam-
mer (1957). The remainder of this report is, as far as possible, consistent in the
use of one of the systems detailed.

The body of the report consists of three distinct components, the first and most

extensive consisting of a largely verbal discussion of the methods and principles

4




Jwas chosen in the hope that it might increase the overail legibility and maximize the

grapkical results are almost entirely the work of Dr. R. E. Kleinman, whose con-
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employed in the various soluticns, the second being = tabulation of the most essential
results (here again a subjective judgement is imglied), and the third containing the

graphical representations of these and the experimental findings. This arrangement

convenience for the occasional user. The admitted disadvantages are perhaps
mitigated by numerous cross-references.
The author is indebted to a number of colleagues for substantial contributions

and support in the production of this report. In particular the sections containing the

stant advice and ample assistance were also instrumental in the completion of the
remainder of the work. It is a pleasure also to acknowledge the faithful service

of Miss K. R. Pushpamala, John Asvestas, and Soonsung Hong in the accumulation
and preparation of the material, and the patient labor of Miss Mary Jane Jahnke,

who typed the difficult manuscript.
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 H
WAVE-FUNCTION SOLUTIONS
2.1 MATHEMATICAL BACKGROUND

2.1.1 Spheroidal Geometry

The geometry of the prolate spheroidal coordinate system, which is vital
to the analytical treatment of the problems we are to consider, is given in detail in
many standard sources. Unfortunately there is no uniformity of notation and the
many systems in use represent a major obstacle in the assimilation of material fromj
the different sources. We will present here a fairly detailed account of two of the
most widely used systems in the hope of providing at least an adequate basis for
deciphering the others. The diagram in Fig. 1 shows a cross section in the
Cartesian xz-plane, and the cylindrical symmetry about the z-axis completes the
specification. The surfaces § = cosh u =const., n = cos 8 = const., ¢ = const. are
respectively confocal prolate spheroids of major axis 2a=2F£=2F cosh u and minor
axis 2b=2FE§_—l-=2F sinhyu, two-sheeted hyperboloids (actually one sheet
corresponds o a positive 7, the other to a negative), and azimuthal planes
originating in the z-axis.

The two representations of spheroidal variables, (&, n, §) and (u, 6, §),

are both prevalent in the literature. While the (&, n, jb) notation is convenient in
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z
n=1 n=.866
- n=.5
X,y
n=-.9
n=-.866
FIG. 1: THE PROLATE SPHEROIDAL COORDINATE
SYSTEM.
8
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one respect, in that a single symbol represents the arguments of the prolate
spheroidal functions, the (g, 8, §) notation is convenient in another respect,
giving rise to a right-handed system of coordinate vectors as opposed to the left-
handed system associated with (£, n, §). In treating scalar problems the (£, n, p)
system is, perhaps, preferable. It is certainly widely used and will be in the
present work. Vector problems involving spheroids are so complicated that the use
of the (u, 9, ¢) system may be desirable in order to avoid a left-handed system,
but most of the literature employs the (&, n, §) variables, and the present account
will do likewise.

The essential relations between these coordinates and the Cartesian

system may be specified by the following forms:

x = F {(€2 -1)(1-n?) cos § = F sinh u sin 6 cos §

y=F ((£ -1} - ) sin § = F sinh u sin 9 sin

z =FEn="Fcosh 1t cos O
where ranges are 1 £ £ g, -1g ngl, 0K Pg2x, or O ugw, 006 K,
0K P 2.

Thus, in the (€, n, ) system,

0E & W(E2 -1)(1- n?) 98 £ M€ -1)(1-n%) ., 8f n(e?-1
x T @) s ST wem b TR e )
on _ -n §(g2 -1)(1 ~12) on_-n V(€8 -l -n?) . an_E(l-n%)
5x P (@ -n) 5P 5t @ - b TR E )
op _ sin @ , 98 _ cos § i _8_Q=0

* gl na-m Y ol -va-m 2%
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‘and unit coordinate vectors"~ are related as follows:;

A 1- , 2-1 A aA
W - Ecos¢1 ‘é‘ég'?n—?' n cos § 117-sm¢1p

(1-n2 | 2.1
and/1\§= '—'L"'Ecos¢/i\x+ 1-n EsinfPi + -E——n’i\z
g -n? g -n? g2 -n?
2 :-f J 2_1 ‘1- 2
/1\'=- ’g—""ncospﬁx - —g‘—rismjb L gli\z
y ‘(;:2 _nz 82 _n2 gZ _nZ

- p [E2o07 = g -n? = 2 1Nl -n2
he = F Sy, b= F 5. By F (&7 -1)(1-n?).

In the (u, 6, P) system

oy _ coshy sinf cos § du _ _coshpusing sinf 8y _ __sinh y cos 6
9x  F(cosh®p-cos®6)’ 8y  F(cosh®u-cos®6) ’ 9z F(cosh?u -cos? 6)

30 _ sinhy cos6 cosP, 30 _ sinhucos6 sinf 88 _ _-coshy sing
9x  F(cosh®pu -cos?6) dy F(cosh®? u -cos® )’ 8z F(cosh? u - cos? 6)

op _ __-sin , of._ cos § a8

ox F sinhu sin 6 oy Fsinhusinf’ pz

e
As in the preceding reports of this series, a unit vector will always be denoted by
a caret, all other vectors by underlined symbols. Also the vector product will be
denoted by a caret, viz. A A B, and the scalar product by a dot, viz. A* B.

10
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and the unit coordinate vectors are related as follows:

AL coshusinecos¢/i\ + sinh y cos 6 cos § A A

= i -sinf1
Jcoshzu -cos?g F | cosh? i -coso 6 p
A cosh u sin 6 sin @ A, sinh 4 cos 6 sin ﬁli\9 + cosﬁ’%
y { cosh? u-cos2g H {cosh? p - cos® 6
/i\ - sinh u cos @ /1\ _ cosh p sin 6 /1\
Z  Jcosh? p-cos2g M {cosh? pu - cos?6
and
/i\ =/i\ . Ltoshy sinf cosﬂ/i\ + coshyu sin@ sin_@/i\ + sinh 4 cos 6 /1\
wo % Icoshzu -cos’e * {coshzu —cos?0 Y lcosh? p-cos?o Z
AA. sinhucosecosﬁ/i\ + sinhpcosesinﬁ/i\ _ _coshpusin@ A
o " Jceosh:Z u -cos? @ X Jcosh2 U -cos? 6 y I cosh? p -cos? 6
A

. A N
i, =-sin 1© + cos i
p P ‘ y

Note that T A 1 =%, 2AA =4, andad AN 4.
weoe P e P

The metric coefficients are

= hey - 2
hu F Jcosa U -cos“é, h6

= F {cosh®u -cos® 6, h¢ = F sinh u sin 9.

The vector operations, gradient, divergence and curl, may be expressed in
terms of the metric coefficients as follows:

H ¢ is a scalar function of position then

L o 1 o A 1 oy A
Ty = — i+ - P — —
) h, 9
h, 9€ & h_3n n P p g
L oA 1 3YA 1 9y A
— i+ i+ i
h“ ou h, 86 6 h¢ op f

et
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If i is a vector function of position, i.e.,

L 25 4y A g A
(g"ﬁpg ib 1 "'ibp ¢"‘ lp'*'ye 9+5D¢¢

KR 2
‘%%W*w%%%’pmh%ﬂ

‘fand.

5 S o N AeL [2 4
fﬁ@g’%ﬁéfh‘p[ae by d)-3gthe ¥ e)] b ny I a9 M b au“‘sb%’:] ‘o

hh [ap(hdf) (nd/)]

Note the deliberate omission of the expression for YAy in terms of the

(&, n, ¢) system. This is done because, while it is true that the expressions for
,’h:vd/ and Vv - ¥ are invariant under a change of coordinate definitio  the expression

Jfor v A ¢ given above is not identical with that obtained by repl. cing (u, 8, §)with

(&, n, ¢). That is, using £& = cosh u, n=cos 6, /i\g = /i\‘J (which implies

“ WE = d/“) , and i" =-i o (which implies wn =~y 9) together with the definitions of the

metric coefficients, it is easily demonstrable that the expressions foryy andv. ¢
in the two systems are identical. However, if we use these facts to rewrite in the

(g, n, P) system the expression for Y A ¢ given above we find that
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-

-1 |38 _ 9 ‘ A__1 |38 AP
VA Lom by ) - 5 “‘n@n’] 't "B, by [aﬁ"‘e %) as“‘ﬁ"ﬁﬂ‘n

[ rLWAR 57- (b, sﬁg)] ’i‘¢ :
Had we calculated VA ¥ directly in the €, n, P) system using the general ex-
pressions relating orthogonal coordinate systems (e¢.g. Magnus and Oberhettinger -
p. 145) we would obtain the negative of the above expression. The reversal of
sense is a manifestation of the left handedness of the (£, n, ) system. While there
is nothing inherently incorrect in the consistent use of a left handed system, there
is an increased probakility of error when results expressed in a left handed
system are compared with or transformed into right handed expressions,

2.1.2 Spheroidal Functions

The scalar Helmholtz equation w2y + k% ¢ = 0 written explicitly in

the (£, n, ) coordinate system becomes

I 3.0 2\ O g2 - n? T ]

— - — e — - —_— + -772 = .
l;w(g ”a& a0 1) 5y (€2 -1)(1-) op? o*(§ =0 @1
where we have set kF=27 F/A=c¢, X being the wavelength, The separation of this

equation is accomplished in the usual way by setting
w(E n, B)=0E) Vn)W(P)

and the resulting ordinary differential equations may be written

d 2 _,dU} _ _ 2 2 m? ] -
_.d_ _n? o2 2 ._P_‘.i_:] .

13
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aud

)
2xxe
dW  m2w=o (2. 4)

dg 2
where m and kmn are the two separation constants. The functions W(f}) are thus
the expected trigonometric or exponential functions, and the necessity of a single-
valued representation for the field dictates that m be an integer. Specification of
the Amn is more compiicated and will be dealt with presently.

The theory of the spheroidal functions, which are the eigenfunctions of the
second order linear ordinary differential equations (2.2), (2.3}, is now fairly com-
prehensive, and it is not the function of this report to elucidate this in its entirety.
The reader is referred to Stratton et al (1956), Meixner and Schiafke (1954), and
Flammer (1957) for more detailed accounts, We will limit the present treatment
to a short account of the general properties which relate these functions to the other
prin-~ipal families of special functions and which are nceded in the applications that
follow.

The hierarchy of second order differential equations to which that of the
spheroidal functions most properly belongs (it is clear that the twn equations (2. 2),
(2. 3) are essentially the same, the only difference being in the range of the inde-

pendent variable), is headed by Hill's equation, which is wriften

2

-C-ld—z% +p{z)u=0 (2.5)

14 oo
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where p(z) is any real periodic function of z which can be expanded in a convergent
Fourier series. If this is specialized by setting

p(z) = c te, (sn 22 +c, K (snz y (2. 6)
the result is a form of the Lame wave equation, which results from the separation
of the Helmholtz equation in general ellipsoidal coordinates. Here sn z is a
Jacobian elliptic function and if its modulus b:comes unity, corresponding to de-
formation of the elliptic system into a prolate spheroidal one, then sn z-—>» tanh z,
and the transformation

tanh? z = 1 - x

reduces (2. 5) to the form (2.2). One may note that in the static limit, i.e. as
k—> 0, equation (2. 5) with p(z) as in (2. 6) still retains its ellipsoidal character, and
its solutions, when properly restricted, are the Lamé functions, or ellipsoidal
harmonics. On the other hand, in the same limit equations (2. 2), (2. 3) become
essentially the equation of Legendre so that the spheroidal harmonics are ex-
pressible directly in terms of Legendre functions.
One further specialization might be mentioned. The constants o o G in
(2.6) for the eliipsoidal system are such that if the modulus of sn z approaches zero
then c,—> 0, and if cz, which depends on both this modulus and k, remains con-
stant, the result is a form of Mathieu's equation, which governs the wave functions

of the clliptic cylinder. Another form of this equation is obtainable from the

15
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spheroidal equations (2.2), (2. 3) if the separation constant m? is set equal to 1/ 4.
The complete theory of Mathieu functions can thus be derived as a special case of
the general theory of spheroidal functions.

The general properties of the spheroidal functions themselves are best dis-
cussed in terms of the singularities of the differential equation (2. 2), which will be

taken as the prototype for all the functions required. The singularities are regular

m

ones at £ =+ 1, each with indices + Py and an irregular one at £ =co. In any region

excluding these points, the solutions of (2. 2) are analytic functions of the four
quantities &, Amn’ cz, m2, and of order no higher than 1 / 2 in terms of the last
three. As noted above, the necessity for single-valuedness of the functions W(§)
restricts the values of m to the integers, and for each m a fundamental system of
solutions is easily established in the neighborhood of each singularity based on
some prescribed initial conditions at an arbitrary regular point. In the work of
Meixner and Schafke (1954) the use of Floquet's theory in the neighborhood of o
leads to the establishment of a fundamental system U1 &), UZ(S) such that

iw ivw

u(ge'™ = e’ Mu (8), U ge™) =
1 2

-y +1
e v +1)x Uz(g), for certain values of v, and

the general solution then has the property U( eM=e' Ty (€) . The quantity v is
called the characteristic exponent, and its permissible values are determined by

the condition that

1 im, s im
smvw-zi[Ul(Eoe )-Uz (§00 Z’

16
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where §0 is an arbiirary point where the initial values are specified, so that for each
set of values ¢ and m there is a denumerably infinite sei of allowabie values of v,
and a corresponding set of eigenvalues Amv . The eigenfunctions we have to deal
with are thus a doubly infinite set with indices m and v, ihe former indicating the
order and the latter the degree. For most of the applications which follow, it is
required that the functions be finite at the singularities of the differential equation

€ =+ 1, and by analogy with the Legendre functions, to which the spherecidal functions
must reduce in the static limit, the index v must be an interger > m. (An ex-
ception to this, however, will be noted in the next chapter.)

No legitimate recurrence relations (i.e., formulas which relate two or
more contiguous functions in terms of coefficients which do not involve other
spheroidal functions) are as yet <nown, and the nature of the differential equation
(2. 2) precludes their establishment by the usual techniques. However, the ex-
pansion of the functions in terms of other known eigenfunctions of simpler equations,
e. g., Bessel, Gegenbauer, Legendre, etc., yields three-term recurrence re-
lations for the expansion coefficients, and these form the basis oi most numerical
treatments of the functions. The coefficients necessarily involve the eigenvalue
Amn’ and convergence of the series implies the convergence of a certain continued
fraction, or equivalently the vanishing of an infinite determinant, which furnishes a
transcendental e¢ation that may be used o determine Amn explicitly. A more

detailed account of the procedure follows presently.

THE UNIVERSITY OF MICHIGAN —wey
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It is apparent that the functions of interest must be either even or odd
about the origin. This follows from the fact that since the indices ai the singulari-
ties§ =+ 1are+ %, no two solutions which are finite at both these points can be
linearly independent, and the continuity of the furction and its derivative at the origin
then requires that U(-£)=+ U(E).

The convergent representation of the solutions of (2. 2) over the entire
infinite range of the independent variable requires at least two distinct expansions.
For the range IE | £ 1, for which equation (2, 3) is the appropriate form, an ex-
pansion in the Legendre functions P::1 (n) is indicated, and since the range is that of
tile angular variable n, the corresponding solutions are called angle functions and
will be denoted hereafter by the symbol Smn (¢, n). The angle functions are actually
of two kinds, those which are finite at n=+ 1 and those which become infinite there;
the latter are of no utility in the physical problems to be considered, and we limit
our discussion to the former, remarking only that there are analogous expressions
for the latter involving the Legendre functions Q:](TI).

We write then

& m m
s (em= D d " @P) () (2.7
r=0,1
where the prime indicates, as always hereafter, that the summation index runs over
the even or odd integers according as n -m is even or odd. Substitution of this

expansion in the differential equation (2. 3), followed by application of the
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differential equation and recurrence relations for the Legendre functions,

g ¥ ,

m
gives the following recurrence formula for the expansion coefficients dr n(c):

s et

(2m+r+2)(2m+r-!-1)c2 mn +[:
+r¥m+r+1)- +
emrort3)emiorts) Gpeg (O F [(mindmir+l)-a (c)

R

5

(2. 8)

. 92 -1)¢?
Am+r)m+r+l)-2m xr-l)c d™  (¢)=0, (r> 0).

-1 cz] 4mn (0)+
2m+2r)2m+2r+3) r (2m+2r-3)2m+2r-1) r-2

4
;- 3
,

There are two non-trivial solutions, i.e. sets of coefficients which satisfy this
family of equations, only one of which, however, yields a convargent series in (2. 7),

mn, .m
and in this one the ratio dr / dr? approaches zero as -c? /4 rl. Rewriting (2. 8)

2

in terms of this ratio, iterating for the requisite range of values of r, and applying
the above condition as r— o and the fact that d:m =0 for r<0': yields finally the

transcendental equation for )Lmn(c) mentioned earlier. Once this quantity is de-

termined, the expansion coefficients may be computed in terms of an arbitrary
initial value and the resulting series (2. 7) will converge absolutely for all finite

values of n. In practice the solution of the transcendental equation for )\mn(c) is

usually accomplished by an iterative procedure using a first approximation given by
a power series representation in the variable ¢2, the first few coefficients of which

are given in the standard literature, e.g. Flammer (1957). The arbitrary value

“The analogous treatment of the functions of the second kind requires the definition
of non-vanishing coefficients dlji‘n with 0 <r < 2m (see Flammer, 1957). No
| ambiguity results, however.
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Jmentioned above determines the normalization of the functions, and this will he

Ysixed in the present work, as in that of Flammer and others, by the stipulation that

1S. (c,00 = P™(0) forn-m even andi s (e 0)-*('1' P™ (0) for n-m odd, with
1°mn n dn mn dn "n

ithe result that

n-m

0o -

i' (-1) (r+2m)! d:m (1) 2  (a+m)
= ) e ETTT T

r-1 n-m-1

v (=1} 2 (r+2m+1)t d s (-1) 2 (n+m+1)
r= 2 ( (r+"m+]) -m( —m-1>, <n+m+?f'or n-modd. (2.10)
. 2 .

' The general Sturm-Liouville theory provides that ihe functions S (C, n) for fixed

Q0 .

{m are orthogonal over the interval -1 < 1 <1 and the normalization factor Nmn is

easily found to be

® mn,,
(r+2m)! (dr )

2
= =
N__ L [s_te.m] an 2 2 Grvamr (2.11)

The index m is in general positive, but if the exponential form of the § - dependence
is used, it may assume negative values also, and the corresponding angle functions

are related to tiose with m >0 by the form

S o (e, m =(- l)m(-tl-—"-i S (c, n) (2.12)

+m)!
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Useful representations for the range £ > 1, i.e., for solutions of
equation (2.2), can be obtained now from the form (2. 7) by utilizing the fact that any
solution of the Helmholtz equation forms a suitable kernel for an integral repre-
sentation of one of the separated solutions in termns of another (cf. Morse‘and

Feshbach, 1953, p. 636). If we choose as the kernel the function

m

ke, m =" (g -1 - )] ’
multiply this by Smn(c’ n) and integrate between limits such that the bilinear con-
comitant vanishes at both, the result is a solution of equation (2. 2) with independent
variable £, which is called a radial functicn and will be denoted hereafter by
Rmn(c, €). Examination of the bilinear concomitant shows that there are three
possible sets of limits, namely -1 and 1, i o and 1, -1 and i co. Substitution of the
expansion (2. 7) for Smn (c, n) followed by use of the differential definition of the
associated Legendre function P;n (n) and an r -fold integration by parts leaves us

with integrals of the form

o}

2 m+
J exc%’n rdn
a

and when 2 and b are replaced by the above three sets of limits, these integrals
can be evaluated in terms of spherical Bessel functions. We are thus led to the

expansions
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R(l)(c £) _p (e2-1)" 4o T (2m+rz. (I) (2.13)
mn {cE)m )
‘fwhere z:f) is one of the four spherical Bessel functions jn, nn, ): j +m o’

(2,
h = jn-inn, accordingly asf=1,2,3,4. The normalization factor p o is arbitrary,
m

and following Flammer (1957), we specify it as

-1

- ! 1
p = ;m-n _m gmn (2_rq'i~r_L (2. 14)
mn § T r:

r‘:
which gives the radial functions the same asymptotic behavior as the corresponding
spherical functions for large argument, i.e.

R(nlu)l (c, &) é—__'?;’) —g cos [E - —(n+11ri] etc (2.15)

With this normalization the Wronskian of the first two types is easily found to be

A(l,2) = (2. 16)

.
c(€-1) °
If the region of definition of either the angle function Smn or the radial function

)

Ron is extendey, with proper adjustment of the phase of any radical involved, it
becomes apparent that for some ¢, the two functions must be linearly dependent,

With the definitions established above, we can thus write

(1) (1)

S (c, 2) = k (c) R (c, z) (2.17)

*
The statement prevalent in the literature that this limit ohtains as ¢~ w is not
correct. Forf » 1 and c~—» w the behavior is otherwise (see Silbiger, 1961),
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with a similar expression relating the second type of angle function mentioned

(2)

earlier to Rmn (c, z). The constants of proportionality or joining factors k&; (c)

may be found in terms of the coefficients d?m by comparing the functions or their
derivatives at z=0. For the functions of the second type, a Laurent series may be
developed in the region 1 < z < o and the coefficients of like powers of the variable
equated. The forms thus obtained are given in the standard literature and will be
deferred here until required.

Many other representations, characterizations, approximate forms, etc.,
are known for the spheroidal functions, but it is doubtful whether our present pur-
poses would be served by dwelling on them at this point. The reader is referred to
the sources mentioned above and to others cited in later sections. We close this
section with a few general remarks which may contribute to the overall perspective.

To date it has not proved possible to find any elementary integral ex-~
pressions for the spheroidal functions, i.e. expressions of the individual functions
in terms of definite integrals involving only elementary, or even only simpler func-
tions. They can however be characterized as solutions of linear homogeneous in-
tegral equations of the form

f(z) = )\JK(Z, z")f(2')dz! (2.18)
where the kernel K(z, z') involves only more elementary functions, as illustrated

above in the derivation of the expansion for the radial functions. Other permissible
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kernels, most of them involving Bessel functions, are given in the references al-
ready cited. Use of kernels involving sphe coidal functions has yielded a number of
definite integrals of products of these functicns, see for example Chako (1955).

Other useful rep;'esentations which are developed at length in the
literature include power series expansicns about the origin and about the singulari-~
Jties + 1. In the appropriate ranges of the independent variables, these are more
| convenient for computation than the expansions given above. For the regions of low
‘frequency or small eccentricity, certain expansions in powers of the pzrameter c
{have been derived, though the range of convergence of these is in general quite
Jlimited. This question has been examined by Senior (1961). Asymptotic forms valid
for large c are also available and can be used to advantage in the high frequency
ranges. These are in general based on the parabolic cylinder or Whittaker functions,
whose equation the spheroidal equations resemble in the limit of large ¢. However,
there are still regions in the frecuency-eccentricity space, which cannot be treated
conveniently by any of the representations known at present. These will be dis-
cussed in a later section,

The lack of legitimate recurrence relations for the spheroidal functions
was mentioned earlier. A number of so-called recurrence relations of the Whit-
taker type are indeed known, but the coefficients which multiply the neighboring
functions contain integrals involving other spheroidal functions, which are in general

intractable, and the formulas have so far been of little utility.
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The theory outlined in this section has been based exclusively on the so-
lution of the scalar Helmholtz equation. The treatment of vector problems of
course requires numerous additional concepts and derivations in most of which,
however, the scalar solutions are intimately involved. The vector solution will
form a separate section of this chapter.

2.2 SCALAR SOLUTIONS

2.2.1 Scalar Green's Functions

We turn now to the solution of a certain class of problems which might
be interpreted physically as the scattering or radiation of time-harmonic sound
waves in a homogeneous, isotropic, non-dissipative medium, by a closed prolate
spheroidal surface with various types of boundary condition. The technique used is
the straightforward (if sometimes tedious) metnod of formally expanding the
requisite field quantities in series of the approprizate eigenfunctions (in this case the
spheroidal functions discussed in the previous section), and determining the ex-
parsion coefficients by application of the boundary conditions at the surface and
(if necessary) at infinity. The resulting solutions will be referred to as 'exact!,
primarily to distinguish them from the various approximate results to be taken up
later on. It is understood, of course, that since these 'exact' solutions contain
infinite series, their exactitude depends on the convergence properiies of these
series and in any practical sense, i.e. in the absence of a virtually infinite com-

putational capacity, the achievable accuracy, particularly in the optics region, may

be far less than that given by a suitable approximate technique.
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Because of the orthogonality cf the angular functions of both the n and
§ variables, the procedures required here are no more complicated than those used
in the case of the sphere, and the forms of the resulting solutions are directly
analogous. The c;)mpleteness of the angle functions, which was not specified in the
previous section, follows from that of the spherical harmonics by a fairly simple
argument (cf. Siegel et al 1953).

For problems of scattering or diffraction in which the energy is supplied by
a source exterior to the spheroid the discussion will he limited to the case of an
elementary point source at an arbitrary location. This includes the plane wave with
arbitrary direction of propagation as a limiting form. The more complicated case
of a dipole source will be considered later in this section when certain electro-
magnetic problems which are essentially of a scalar nature are taken up. The
boundary condition for the scalar problem is in general the vanishing of a linear
combination of the field quantity, which is usually the sound pressure or velocity
potential, and its normal derivative on the scattering surface. The particular
cases of the Dirichlet condition (where the function itself vanishes and the surface is
termed 'soft') and the Neumann condition (where the normal derivative vanishes
and the surface is called 'hard') are both obtainable by specializing the coefficients
in this linear combination.

The solution for an elementary source with any of these boundary con-

ditions is properly termed a Green's function, and its derivation follows the standard
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procedures given in any texi on mathematical physics. In terms of the spheroidal
coordinates specified in the previous section, the field strength at the point r(g,n,)

due tothe unit source at the point r; (El,nl,yll),i.e. the free-space Green's function*,' is

klr-r |
wlr)=G (r, r )= 'Z;T;j;-i . (2.19)
— —1'
This is then the solution of the inhomogeneous wave equation
v2G+kiG= s(c-r) (2.20)

where the right hand side is the Dirac delta function, which vanishes except at

r=r . and whose volume integral over the entire space is unity. At large distances
from the source, ¥ represents a spherically diverging wave, in accordance with the
well-known Sommerfeld radiation condition, which is one of the boundary conditions
necessary to determine the solution of any such problem uniquely. Since the quantity]

Go (r, r 1) is symmetrical inr andr . and satisfies the homogeneous wave equation

at all points except r = r , the standard theory for such equations permits us to write

1

almost immediately the formal expansion (cf. for example, Morse and Feshbach,

1953)
G (z, r)=G, (&, n, §; €. ¢1)
(2.21)

)

n

- / (1 (3)
= mE , A Smn(c, n)Smn(c, n ) cos m{f 91 )Rm (c, E<)Rmn(c, &1
>'z'I‘he harmonic time dependence, e_wt, is assumed, and this factor is delcted from

all field quantities.
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where
<
g - 3 for €< §
§ §<§
and cenversely for §>.
(3) (4)

{1 The occurrence of R' " rather than R’ is a direct consequence of the form of

radiation condition dictated by the choice of time dependence, rl-ivmoo r[—g-% -ik(% =0.

By integrating both sides of equation (2.21) over a vanishingly small
interval in § about the point 51 and making use of the orthogonality of the functions
of nand §, the coefficients Amn are found to be

ike

_ m
mn 21N
mn

where €m is the Neumann number, defined as

€ =1form=0
m

€ =2form=1,2,3........
m
and Nmn is the normalization integral given in equation (2. 11).
The analogous form for the total field exterior to a spheroidal boundary
to which the source is also exteri.r can be obtained from (2.21) by simply adding a
symmetric function of the source and observation points such that the total field
satisfies the boundary condition specified on the spheroid. We consider here a

linear homogeneous mixed boundary condition of the form
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Ez¢+3 %J =0 (2.22)
§=§

where ¢ is the total field due to the point source in the presence of the spheroid

£=£ and s is the normal derivative, — 8_ The Green's function satisfying the
0 on hE o€

condition (2. 22) is then written

€
ik m .
G(r, r)=5 E e Smn(c, n)Smn(c, n ) cos m(§ ¢1)

(3) (1, . {3)
Rmn(c’ §>) [Rmn(c’ s <) - CmnR (0,52]

and constant Cmn is found by subjecting G (or more specifically, the quantity in the

brackets in G) to the conditions in (2.22). Thus, we obtain

ik €m
G(5£1)=§77 S (c,mS_ (c,n;)cosm(f-¢, )
m,n mn
(1) (1)
E) 3 (cE)
(3) (1) R on (3)
(S)R (,E,)- R "(c,& ) .
m < (3( §')+B (3) g)‘ mn <
(2.23)

The solutions for Dirichlet and Neumann boundary conditions follow immediately on
setting B and « respectively equal to zero.
The solution for plane wave incidence is also obtainable from (2.23) by

letting the source point recede to infinity in some arbitrary direction specified
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by the spherical coordinates 61, ¢1. The resulting behavior of the affected
quantities in (2. 23) is as follows:

1’11 —> CO0S 61, where 91 is the polar angle,

i(c &, -+ X)) ikr
€ @ R(3)(CE)—>e : =& 1‘(
" CEI - kr,

+1
)"

c’é’l—-> kr1 where r, is the distance of the source from the origin.

The expression for the total field must be renormalized, i.e. multiplied by the
factor rle-ikrl :n accordance with the usual plane wave representation, and the
final result, which is no longer properly termed a Green's function, but which in
consideration of its similarity to the previously derived expressions we might denote

by the symbol Ga)’ is the form

€

© ®
Gm(g, n, P; 91, ¢1) =2 Z Z (—i)n Nm Smn(c, n)Smn(c, cos 91) cos m(¢-¢, )

m=0n=m mn

(1) 9 (1)
Q/Rmn(c’ §0)+B 9a Rmn(c’ 80) R(3)

Q,R(-"' )
mn

et) ey
Rmn(c,S)

(c, &) . (2.24)
0 3
(c, € )+B—'—R( ) (c,e) ™
o] on mn 0
One further specialization is worth noting here. If the source is re-
stricted to the axis of symmetry of the scatterer, then nl =1 and ¢1 disappears.

From the representation (2. 7) of the angle functions and the well known properties

of the Legendre functions, it follows that Smn(c’ 1)=0form > 0. Onec of the
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summations in { 2.21) thus disappears along with the f-dependence and the resulting

form is
©ne, -2 S Lo s (oo 8P (0 ), @.29)
Gog’ m; §1’ T o2r Z N Son c N on'°? ) on c,E< on c,% o

n=o0 on

and the same modifications obtain in the expressions for G and Gm . If the obser-~

(3)

mn

vation point is in the far zone, the asymptotic forms for R(nllz!(c,&’) or R_ " tc,§)
may be used in (2. 25) and further simplication will result. The specific forms are
presented in section 4,1,

The standard problems of radiation from a spheroid can be handled in
similar fashion. Here the incident field is absent and the boundary condition is
inhomogeneous. A mixed linear boundary condition similar to (2.22) is generally
enough to include most problems of practical interest and we outline the procedure
briefly, deferring specific cases for later treatment

Suppose that

(}wﬁ%]w = ¥, ) (2.26)
(0
where F is sufficiently well-behaved so that it can be expanded in a double series

of the surface wave functions Smn(C, n) cos m §. Then we write

F(n, P)= Z A S (c,mcosm$ (2.27)

mn mn
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and from the orthogonality of the angle functions, the coefficients Amn are given by

1 1

N (1+6 )
mn om

Amn(c) = F(n, # )Smn(c’ ncos m@ dndp (2.28)
-1

The radiated field &, n, P) is expanded in the same manner as before,

N (3)
(g, n, B)= / anRmn(c,S)Smn(c, n)cos m (2.29)
m;n

and subjected tu the boundary condition (2. 26), and since the angle functions are
linearly independent we can immediately equate the coefficients of the functions

Smn(c, n)cosm§ to give

-1
_ 3 9 (3)
an-Amn Em'mn te, go)+6 on Rmn (e, goﬂ (2.30)

The obvious specializations of this result may be carried out as in the previous

forms.

2.2.2 Pseudo-Scalar Problems

The formulas developed in the preceding paragraphs are sufficient
for most problems involving the scattering or radiation of a time-hiarmonic scalar
field by a spheroid of fairly arbitrary si.rface characteristics or behavior. We now
wish to show how they can also be used to solve a limited class of vector problems
in which the vector field is essentially characterized by a single scalar quantity. As

will be seen, the scalar problems involved are of interest only in connection
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with the vector problem from which they are derived. Hence, the designation
"pseudo-scalar' will be used to distinguish them from scalar physical problems.
The general vector problem is that of finding the electric and magnetic
field vectors, Eand H, external to a prolate spheroid in the presence of any of
various incident or primary fields. Our attention will be largely restricted to
hodies which are either perfect dielectrics or perfect conductors, imbedded in
homogeneous, isotropic, perfectly dielectric media of permeability u and per-
mittivity €. In MKS units the homogeneous Maxwell equations which govern the

behavior of the field quantities at all ordinary points in space, are written

VAE-iwuH=0

VAH+iweE = 0 (2.31)

The expression of Maxwell's equations or the concomitant vector wave
equations in the spheroidal coordinate system results in a set of three partial
differential equations in the components of either the electric or the magnetic field
vector, each of which contains all three components (cf. Page, 1944), and the
simultaneous solution of these is in general impractical. The solution of the general
vector prublem must accordingly be attacked by means of a different technique,
which will be described in the next section, In certain special cases, however,

notably those in which the entire system is symmetric about the axis of rotation of
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the spheroid. the equations degenerate, and the entire field representation can be
obtained in terms of a single scalar quantity which satisfies the scalar wave
equation with the § -dependence removed.+ Page also points out that. as in the
spherical coordinate system, the component equations separate in cases where both
the electric and magnetic fields are normal to the radius vector at every point, i.e.
the propagation vector is radial at every point, which is the so-called TEM mode.
It should be noted, however, that this restriction is so stringent as to exclude
practically all radiation or scattering problems of rezl interest.

The separability in the axially symmetric spheroid problem was first
exploited by Abraham (1898) to find the characteristic frequencies and decay rates
in a dielectric medium surrounding a conducting spheroid, and has since been used
by various authors for related problems, as outlined below.

From an analytical standpoint, there are two possible types of axially
symmetric field, one in which the E vector is in the meridian plane at every point
and the H vector is normal to this plane, and the other in which the roles are inter-
changed. We limit our discussion to the former case. That is, the magnetic field
is assumed to be given by

= =_/'\ i +/\ Y
H $H¢ lxsmjﬁﬂ¢ 1ycos¢H¢ (2.32)

+
Actually this holds not only in the spheroidal case but in any reasonably well-
defined orthogonal coordinate system.
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where H ¢ is independent of §. Since Maxwell's equations (2.31) imply that the
rectangular field components satisfy the scalar wave equation, i.e.,

sm §

2 2 -
© +k)cos¢H¢ 0,

and since this equation is separable (see Sec. 2.1.2) it follows that H ) is pro-
portional to the product Rln(c, 3 )Sln(c, n). Note the appearance here of the
spheroidal functions of order one, in contrast to the scalar case where an axially
symmetric field entails only the zero order.

The mechanism is thus established f>r the determination of the character-
istic electrical oscillations of the conducting spheroid in a dielectric medium and
the solution of related boundary value problems involving axially symmetric ex-
citation, For the former, we can apply the appropriate boundary condition to cach
harmonic, i.e. fcr each value of n, individually. On the surface of a perfect con-
ductor the tangential electric field must vanish identically, and in our case this is
simply the condition ET) =0at§ = 80. From the second equation of (2. 31) and the

representation of H ) specified above, this is equivalent to
0
- -1 , =0 = .33
Y [\IEZ R (c s}l at§=¢ (2. 33)

which is an implicit equation in the quantity c=KkF. The roots of this equation will,
in general, be complex. The proof of this will not be given here, but an analogy can
be drawn with the spherical Bessel functions and the essential argument is as

follows. I the radiation condition is to be satisfied for large £, then the radial
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K function‘must.be of the thirdtype, R~ =R "+iR . R andR 27 are both real,
andas in.the case of Bessel functions, neither they nor their respective derivatives
’ :lla{reAahv common zeros. If the root of (2. 33) with least absolute value is called e

tpen the characteristic wavelength of the nth harmonic is

';ind-«;thesl_ogarithmic decrement, which determines the time rate of decay of the

: ~ This is essentially the procedure used by Abraham (1898), Page and
i\dams (1938). Page (1944), and Ryder (1942) to investigate the resonance
‘phenomena associated with thin conducting spheroids in general, and in particular
| ~with the limiting case of a thin finite wire (Eo—>1). The roots of (2.33) are found
by expanding the radial functions and their derivatives in power series and then
using a successive-approximation scheme to solve for c - The same techniques
can be used for the case where there is an axially symmetric applied field. This
field is assumed to consist of a known component of each harmonic, and the
boundary condition is applied to each harmonic of the total electric field, i.e. the
sum of the applied and radiated fields. In this way the above authors gained con-
siderable quantitative and qualitative information about the resonant frequencies and

decay factors of thin spheroids, as well as the antenna currents and impedances of

3648-6-T
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these bodies when stimulated by time harmonic uniform fields or plane waves of low
frequency with electric vectors in the axial direction. A thorough discussion of their
results in beyond the scope of this repor¢, but certain ones of particular interest
will be mentioned in a later section.

The general axially symmetric vector scattering problem can be solved in
much the same way as the acoustical problem. Given the completeness of the
spheroidal functions in the established ranges of the variables, the applied (or
incident) and the radiated (or scattered) fields can both be expressed in terms of
scalar quantities satisfying the Helmholtz equation, and these can be expanded in
terms of the appropriate spheroidal functions. The known and unknown coefficients
can be related as before by using the boundary conditions at the surface and the
orthogonality properties of the angular functions. In this way the problem of an
axial dipole located at the tip of a conducting spheroid has been solved for several
eccentricities and frequencies by Hatcher and Leitner (1954), and that of the same
source located at an arbitrary point on the axis for a somewhat larger range of fre-
quencies and eccentricities by Belkina (1957). The procedure is as follows,

If a point electric dipole is oriented parallel to the axis of symmetry of the
chosen coordinate system and located in this axis, then the associated scattering
problems involving symmetrical bodies can be solved in terms of the single magnetic
field component H g The first step in the spheroid problem is to expand this com-

ponent of the dipole field alone in series of spheroidal functions. I the dipole
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moment is p ’i\z and its location is at the point (&1, 1) the field component at the point

(£, n) at a distance R from (§1, 1), is (see, for example, Stratton 1941)

ikR
H¢ =-Z—:E QR—" é-‘;ﬁ}'{) sin @ (2. 34)

where

R = FY&2 + 17 ~14g2 -2 €€ 7

and O is the angle between the vector R and the dipole axis, i.e.

FIE2-1)(1-n?)
R

siné® =

As in the previous cases of electromagnetic oscillations, the appropriate spheroidal
functions are those of order 1, and in terms of the undetermined coefficients
& .

n(El ), we write, for § > 81,

KR . d (2)
= [pg) sme =2 e, @ R €05, (00 (2.35)
n=0

1

The Jdetermination of the an(S‘) is facilitated by letting £ become very large, under
which circumsiance
R—>F(§-§, cos 6), cos @—>1

and the left side of (2. 35) approaches

~i cos 8
e c§ 1 sin @ -

Further:iore, as specified in the pceceding section,
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3 nt+le
R (e —s> ()",
1n cg
and using these limits in (2. 35) gives the form
0 )
- 1 z : +1 .
e 1c§1 cos 9 sing == a (51) . (-i)n S, (c, cose) {2.36)
k =0 n In :

Differentiating the well-known expansion

®
o icE1c0s8 _ Z (-i)™2n+1) jn(cfg"I )Pn(cos 6)

n=0
. . ) 1 -
with respect to 6 and using the fact that ——~ Pn(cos ) =Pn (cos 6) we can write

00

a
e1o,%9 ging = S (4 en+ 1) (e8P (cos )
=0

FOl R

aQ
D lale, X-0""1s (cose) (2.37)
=0

Multiplying this equztion by S, r (cos 6) sin 6 and integrating from 0 to 7 gives
T

(00
XN 1
= c§l f ; ("i)n(z n+ l)jn(CSlJPn(C'OS e )Slr(cos 6)sin6d 6.

n=0 0

AT
ar(é’l)(-l) N .

The integral on the right is easily dealt with by means of the expansion (2. 7) for

the ang 'ar functior. Slr’ and the result is
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VN = 21k n(n+2)
a (€ X-)'N,_= :zg:: S e

no,

n+t 1(cgl)°

The sum on the right is now precisely equivalent to that appearing in the expansion
(2. 13) of the radial function Rg:l (cEl) for m =1, and the final result is therefore

-2(-i)r+1kR(llr) (cE,)

NlrplrJgi -1

ar(ii 1) =

so that the desired expansion of H ) is

0y

. wiklp -i—l-—-r{"< R 608, (o) (2,39

g - 2
P oo \Igz 1 20 1 In
and the boundary condition (2. 33) is applied to the total field, i.e. the sum < (2, 38)

and (2. 39), with the radial functions interchanged in the latter, yielding at once

s

) _
~- )‘ (3) (C,E ) o |82 -1 R(l)(c: E9
A(§)= (2. 40)
n -t plnN In ai,(,}e -1 R(3 (c, g)
/le-=¢,

which, in conjunction with (2. 39), gives the scattered field of the conducting
spheroid excited by an eleciric dipole located in its axis of symmetry.
If the dipole is located in the surface of the spheroid, i.e. at the pole,

then § 1 =g o and the expression for the Wronskian of the radial functions of firstand
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third types, which is i times the quantity given in (2. 16), reduces the expression for
the total field to

—.n_(3)

0 (i) R, ()5, (c,)

T -wk2 '
Hn‘ 2 -
E
0

(2.41)

The far zone radiation pattern is obtained as usual by inserting the asymptotic form
of the radial function in the numerator of the above and dividing by the quantity
eikr /r.

We close this section with some general remarks on the relations between
scalar problems and axially symmetric vector problems involving the spheroid.
In Kleinman and Senior (1963) it was shown how the vector solution for an infinite
cone excited by a radial electric or magnetic d:pole can be obtained by applying a
vector operator to the solution of a physically mearingful scalar problem involving
a point source and a simple (Dirichlet or Neuriann) boundary condition satisfied by
the total field on the conical surface. The problem is formulated there in terms of
a pair of Debye potentials, which are independent solutions of the scalar wave
equation, and the result just stated derives from the fact that in the particular
coordinate system appropriate to the cone problem, the electromagnetic boundary

condition can be satisfied if one of these Debye potentials vanishes identically and

the other satisfies one of the above-named scalar boundary conditions on the cone.
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Unfortunately in the spheroidal coordinate system this situation does not prevail.
The general electromagnetic field can still be represented in terms of a pair of
Debj e potentials, but even if the corresponding scalar source is located in the axis

of s:ymmetry, the resulting expression for the tangential electric field component ETI

con:ains one or the other of the potentials as well as its derivatives with respect to
both £ andn, so that no simple scalar boundary condition on either potential can
make this component vanish. Thus it appears that, while the axially symmetric
vector problem can still be solved in terms of a single scalar quantity, the cor-
responding scalar boundary value problem cannot be reduced directly to one of the
standard forms previously derived, and probably has no physical interest in and of
itself.
2.3 VECTOR PROBLEMS

In the preceding section it was shown how the solutions of certain electromag-
netic problems involving spheroids could be obtained directly in terms of a single
quantity which satisfies the wave equation and certain boundary conditions of a
rather complicated form. The requirement of complete axial symmetry stipulated
there is of course & stringent one, and rules out the important cases of arbitrary or
transverse dipole sources, as well as the limiting case of a plane wave. Con-
sideration of the latter, which is our next objective, requires a much more

elaborate analytical apparatus, which we proceed to develop briefly.
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In the preceding report of this series (Kleinman and Senior, 1963) a general
formulation was given for the solution of an electromagnetic scattering problem in
ferms of a pair of Debye potentials or their associated Hertz vectors. This
formulation could be applied to the spheroid problem, and the solution could pre-
sumably be carried out in some manner though not in the same sense that solutions
to the cone and sphere problems have been. That is to say, the solution would not
be obtained in closed form or even in terms of explicit expressions for the
coefficients in an infinite series. The difficulty which arises is primarily con-
cerned with the boundary conditions, and in order to bring this out more clearly,
and also to lollow existing literature on the problem, we present here a somewhat
different (though essentially equivalent) formulation in terms of a set of vector wave
functions analogous to those developed for the sphere problem by Hansen (cf.
Stratton, 1941, p. 393j.

The construction of these functions is perhaps best motivated by a brief dis-
cussion of the import of the term separability as applied to a vector problem. If 2
general vector solution of the wave equation.

VEF+k® F = VV* F- VAWAF +k? F=0 (2. 42)
is resolved into components parallel to the coordinate axes, three scalar partial
differential equations for the components result, each of which, except in

rectangular Cartesian coordinates, involves more than one component, so that the
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simultaneous solution of the system is prohibitively difficult. As pointed out in the
preceding section, if the field is axially symmetric, the system degenerates for a
suitable coordinate system, and the solution is easily found in terms of a single
scalar wave function or potential. In the absence of such symmetry a more subtle
resolution of the vector function inquestion is required. For most physical
problems of the sort considered here it is advantageous to split the vector into two
parts, one of which is the gradient of a scalar function and is called the longitudinal
component, and the other of which is the curl of a vector and is called transverse.
The scalar functions involved must then be solutions of the scalar wave equation and
must satisfy boundary conditions which, at least in a system where this equation
separates, are easily determined from the original vector ones. Thus, we write the
longitudinal component as L =v §, where §§ is a solution of the scalar wave equation.
Being a gradient, however, the longitudinal vector component will in general have
non-zero divergence, and accordingly will not be suitable for representation of a
source-free electromagnetic field, so that our primary interest here is in the
transverse component, which is divergence-free by virtue of its definition as a curl.
This condition ensures that only two independent scalars are required to specify the
vector quantity completely, and these should be chosen in such a way as to facilitate
the satisfaction of the boundary conditions. In general it would be desirable to re-

solve the transverse field into two component solutions, one of wnich is tangential
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to the scattering surface and the other normal to it. Unfortunately this is not
possible in most coordinate systems, but for certain ones of importance namely
those in which one of the scale factors is unity and the ratio of the other two is
independent of the coordinate corresponding to the first, something approaching this
objective can be achieved (cf. Morse and Feshbach, 1953 p. 1764). The tangential
corponent is expressed as the vector

M=vA (B oE)P),

where £ ) is the variablewhose scale factor is unity, a. is the corresponding unit

1

2
coordinate vector, w (§ 1) is such that gg?- =0, and {¥ is a solution of the scalar wave
1

equation. The third component cannot always be constructed normal to the first
coordinate surface, but at least its curl can be made tangential to it if the vector

function is defined as

N = = VAVA (é‘le)

1
k
with w as before and Q a solution of the scalar wave equation (which may or may not
be identical to ﬂ ory, as suits our purposes). The possibility of resolving a general
vector solution into three components as described above, where the scalar
quantities involved separate in the usual way, is perhaps the most practical
definition of separabhility of a vector equation.

For the spherical coordinate system, this process has been carried out com-

pletely, (cf. Stratton, 1941), and one application is the well-known solution for
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electromagnetic scattering by a sphere, in which explicit expressions are obtained
for the coefficients in an expansion of the field in series of the Mand N vectors over
the indices of the common set of scalar solutions from which they are formed. In
the spheroidai coordinate system, however, the vector wave equation is not com-
pletely separable in the above sense. The scale factors are such that the transverse
field cannot be resolved into components which permit the satisfaction of boundary
conditions by the individual inembers of the series, and the best that can be done is
to obtain an infinite system of equations for the infinite set of coefficients, which
can be solved approximately by truncation.

In the above forms, the vector 2, was specified as  unit coordinate vector.

1
Actually solutions to (2.42) are obtained if 51 is any constant vector, or even the
radius vector r. This permits considerable freedosa in the choice of a particular
set of vector functions for a given prcblem, and rne determination of the optimum
choice, i.e. the set which minimizes the labo or complication, is not zasy. To
the best of our knowledsze, the question has -0t been absolutely settled for the
spheroid problem, and we limit the pres nt account to an outline of the solution
which exists in the literature and whir 1 was given by Schultz (1950). This assumes
a plane electromagnetic wave incid..nt on a perfectly conducting spheroid and

propagating in the direction »f t'¢ major axis. The generalization to the tase of

arbitrary incident direction r.uds little of analytical interest.
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I a is an arbitrary constant vector and weg)n is a separated solution of the
o
scalar wave equation, where the index i=1,2, 3, 4 denotes the type of the radial
function involved (the angle function is always of the first type), then application

of the forms given above yields the various sets of vector functions

(i) (i)
éemn =V wemn
o (o)
a(i) (i)
Mgmn =V d/gmn/\ a (2.43)
a(i) 1 a(i)
Nemn = [ VA Mep,
0 0

where the e and o subscripts denote even and odd § - dependence, as before. In
these we must first specify the vector a and then select whichever sets of functions
are best suited for representing the fields we are dealing with. As noted previously
the L functions will be of no use for the present problem since their divergence does
not vanish. Actually, in contrast to the classical sphere solution, the spheroid
solution of Schultz does not employ the N vectors either. Instead, three distinct
sets of M vectors are generated by substituting for a the three Cartesian co-
ordinate vectors 'i\x, ’i\y, /i\z. The completeness of these sets follows, by a simple
argument, from that of the set of scalar wave functions (cf. Siegel et al,1953) so
that the possibility of expanding any solution to the given boundary value problem in

a convergent series of these functions is assured. In the particular case considered
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here only certain of the M vectors are required, and in the interest of economy we
will list below only those to be used. Detailed expressions for the rest appear in

Flammer (1957).

If the incident plane wave is assumed to propagate in the negative z-direction
with electric and magnetic vectors in the positive y- and x-directions respectively,
then a brief examination of the forms given above indicates that its electric vector

should have an expansion of the form
E=pe " = = B A wD (2.44)

(The choice of the even functions here 1s obvious with the assumed polarization, and
since it develops that only even functions are needed throughout the solution, we can
drop the e subscript with the understanding that all wave functions are even in §
unless otherwise stated.) From the expansion of the exponential i. spheroidal wave
functions (equation 2. 36), and the definition (2.43) of the M functions, it is easily

determined that

n
A=2iS§ (l)/N . (2.45)
n on on

If the spheroid & =EO is perfectly conducting and if the total electric field is

represented as
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s . o
where E represents the scattered field, then the boundary condition at the surface
can be written

1. AE =0 or E;) + EZ =0=E;51~E; , (2.46)
£=§ £=¢ £=¢

o 0 (o}

STy

Now since the M vectors form a complete set, we can assume an expansion of t e

scattered field of the form

3 7 YA
2 : < T AR YA N MZ(BD (2.47)
mn "'mn mn T mn mn—mn

The third type of function is dictated by the radiation condition at infinity. Each of
the three sets of M vectors has its own characteristic § -dependence which is ex-
pressed in terms of ordinary trigonometric functions, and since the boundary con-
ditions (2.46) wmust hold for all #, the orthogonality of these functions may be in-
voked to reduce drastically the variety of M vectors appearing in the series (2.47)
for the scattered wave. It develops immediately on substituting the expansion of
the M vectors in (2.47) and applying (2.46) that the only sets of vectors whose
(3) z(3)

coefficients do not vanish are Mo and Ml , andwe canrewrite {2, 47) accordingly

as

S = X . x(3) 2(3)
£ = E : (A' M +A° M (2.48)
- = n ~on '—ln
n=

The essential problem now lacing us 1s the determination of the cocfficients
!

X 7 A . .
A and A mn {2.48), to which end we must make whatever use we can of the
n n
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boundary conditions. In order to see the exact nature of the difficulties we first ex-
press the M vectors in terms of the sphercidal coordinates using (2.43) and the

transformation of cocrdinate vectors given at the beginning of this chapter. Thus w¢g

have
x{1) _ fg_{’ L-nz2 Son (1) . \ e
Mon  © F{ g2 -n2 dn Ron Sin ﬁ} \2.45)
/} 2-_
) [§f -1 d (1)
+F{J;—nzsondER ._sm}
A . y
B IxgE-y o d (1) g(1l-n%) d (1)
* F | (&8 -n?) Son d§ on 4 (82-1n% dn onRo cos f
(3) E_ {/ § (3) 'n n E
Z -
M = S, R "sin + -~ S. R.” sin
o F gz -y MO0 } F {J(l-n?)(&?--n% tn i f
Y e l@ 4
Po/-ENEc-ni-n?) . d _(3) Nyt -1 -n*)d. 6
TF (Z-n%)  Stnae Bn P T @ o0y ar1nR1nS
The third set, MX(BE is of course identical to MX % exceptthat the radial function R(B)
—on —on on

(h

appears throughout in place of Ron . Substitution of these in the field expansions (2,44)

and (2.48), followedby apnlication of the boundary equations (2,46) yields the two equa-

tions
T d (1) SO WX [T L (3)
e N - v —— £\ = ‘ Fz _l : -.(.'.._
k E /—='E) An ‘(go b Son(q) d€ Ron (Q:L nl.____(J An 0 g'on(n){:d& Ron (&E]
n o 4 £
0
w ) . (3)
- DA == IR () (2.50)
n 5> In In 0

Sy
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P =
e J(sz-nvs S RO s g-nt ks iR (e )1
n¥o " ° SO
(00)

N X e e 4 (3 _n2y -4 q (3) ;
—4 An n(SO l)"on (n) a R (g):] +€0(1 ] )dn Don(n)Ron (a;-’o) (2.51)
(0]

0

_ : r e -nfiE@ 0w (3) k
Z g J(e2-1(1-n?)s, (0= (sﬂ nf(e2-1N1 =Py (R, (e )

n=o
g0

The essential complication of the spheroidal geometry now becomes apparent.
In the corresponding equations for the sphere, the angular dependence is such that
the orthogonality of the angle functions can be applied directly to give two simple

: : . X z
expressions relating the known coefficient An and the two unknown ones A", An
n

with the same index n, and the scattcred field is thus expressed in terms of the
series (2,48), all of whose cocificients are ecasily written down. For the spheroid,
however, this is noi possible. The appearance of the scale factors and of aagle
functio.s with two difterent values of the index m makes it impossible to relate the
known and unknew:n cocefficionts with the same, or even with a finite number of dis-
tinct indices n. Since there are no recurrence relations for the spheroidal
tunctions, there scems te be no easy way around this difficulty, and the best one can
do1s to obtaun annfinite system of simultancous equations for the unknowns and re-

sort to a large scale computtag program tor s solution,
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Such a system was constructed by Schultz in the following manner. Equations
(2.50) and (2.51) are multiplied by a function Sor (n), with r ranging from O tv oo,
and integrated over the range -1 < n< 1. The result is a doubly infmite system of

. ) .. X 2 . .
equations in the unknown coefficients An’ An, which can be written

Q(R\[ X z \ i O
» ' {C AT+D A“ s B 2.52
ZJa\'rn " n rn n/ Ea Z rn ( )
n=o n=o
(% X Z i 0%

V AT FW AT )=E U 2.53
ETJ (rn n rn n> a Z.r rn ( )
n=o n=o

where r=0, 1, 2. . . o, and the known quantities are

iA dRoill) 1
= n 2
=— -1 — S S dn
Bm cé 450 d€ |, on or
o S
o -l
]
dROéB)’ ~
=T | S ~ 1 2.54
le aE | g Son Sop A1 (2.54)
¢ -
o -1
= (3)
Drn = -R, (go) i i S dn
, N ln or
- l_nu

1

lAn i (L) 1 (1) dbon

U Sl =R § nS S8 dn+r R (&) \(l-n?)—=S dn

rn ¢ 0 dé on J : N dn or
1
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dar &) L h ds
v om=(e? -1) =22 | ns s anee r (1-n?) =225 an
rn ) d¢ J on or o on an or
io -1 -1
dR(a)l ; ] ds

— In i (2) 1
v =o£ 2 _ g 1-n2 dn+ 2 1 2= P
i\ e 80 & lg 54 n Slnsor n j&o Rln (%)S l-n an SorJn

o -l -1

With the exception

UN

X

VERSITY OFf

S S dn, which is of course equalto N 6 , the above
on or or rn

|

integrals cannot be evaluated in closed form. They can, however, be expressed in
series of spherc:dal coefficients by simply expanding each Smn in series of Legendre
functicns and usin:z the orthogonality properties of the iatter. The actual ex-
pressions are given in Chapter V.

The convergence of the above system of equations could presumably be deron-
strated rigorously by straightforward methods, but this seems hardly worthwhile at
this point in view of the reisonableness of the results and the simple physical argu-
ments which support it.

As noted previously, the system can be solved approxi-

mately by truncation, i.e., by taking only the first N cquations of eanh set and

solving for ihe first

. pairs oi unknowns.

The number N depends, of course, on

the size (and eceentricity) of the body and on the accuracy desired.

The [act that

over halt the terms in the systens vanish wdentically 1, of some small benefit 1n the

computation task, though this gam 1s ratuer overbalanced by the circumstance that
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the remaining ones are complex. Details of extensive computations based on this
soluticn and done on a large scale digital machine are given by Siegel et al (1953)
and Ritter (1956).

An expression for the scattered field in the far zone is of primary interest in
radar problems and can be obtained from (2. 48) by substituting the asymptotic forms
(2. 15) of the radial functions into the expressions (2.49) for the M vectors. Thus at

large distances r from the spheroid"‘, the scattered field is

. (00
elkr n JA X
S =— Z i {3 [—A S _(n) sin ¢]
- r n=o n n on

IR

—~~
[\W]
wn
(2]
T g

+4 [Ax ns () -ia“vA-n? s (n):]cos fs\‘-
$Ln Ton n In J
In the generalization of this solution to the case of arbitrary direction of in-

cidence (Reitlinger, 1957) the field must be expanded ina double series,with the in-
dex m running from zcro to infinity. The proper choice of the M vectors becomes
even more difficult, and the matching of terms in the boundary equations by means
of the § - dependence is ot so trivial.  The 1 -dependence is also more complicated,
so that the matching procedure used above produces not only the 71 integrals on-

counterced there but also numerous others of similar form, and leads to an infinite

. ) )
The eriteria  for the vahidity of these torms are that (¢€)* > » '\mn and

(cE)*(£2-1) m*.
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set of infinite systems of equations for the expansion coefficients. The mere
transcription of these is a rather formidable task, and it is hoped that the reader
will never be faced with the necessity of using them.

Another extension of the wave~-function soiution might be discussed briefly at
this point. This deals with the case of a dielectric scatterer. A radiation problem
of this type was treated by Weeks (1958). The case considered is that of a
homogeneous dielectric spheroid covered by a spheroidal shell of another dielectric
and excitec by a transverse slot at each of several locations. This type of ex-
citation is strictly outside the range of the present report, and the deiails of the
solution will not be given here, but certain of the results are included in another
section. The gereval technique, i.e., method of representation of the fields, is the
same as in the case of the perfect cenductor, but here, of course, the field interior
to the body must also be considered. The problem of matching the fields at the
boundaries is even further complicated by the fact that two different values of the
wave number k are involved, and since this appears as a parameter in all the
spheroidal functions, the orthogonality relations are further restricted. Instead
of multiplying the boundary equations by a spheroidal function and then integrating,
as 1n the solution of Schultz, 1t is necessary to expand each angle function appearing

there 1s series of Legendre functions und then employ the orthogonality properties
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of the latter*. The result is again an infinite system of equations in the infinite set
of unknown expansion coefficients for the radiated field, numerical treatment of
which requires a large scale computing facility, The convergence properties of
this system would presumably be similar, though not necessarily identical,to thcse
of the system constructed by Schultz, This question has not bee 1 thoroughly in-

vestigated, however,

* A variation on this procedure has been given more recently by Yeh (1963} who
published a formal solution of the same problem, presumably being unaware of the
existence of Weeks' earlier and more extensive v ork, In this paper the angular
functions pertaining to one medium arc¢ expanded directly in terms of those of the
other, the coefficients being expressed as series involving the two sets of dfin,

The two solutions are essentiully equivalent, and it is not immediately clear which
form is preferable. In an earlier report by Johnson (1955) the problem of the
dielectric spheroid was attacked by means of a set of approaximate vector wave func-
tions, which satisfy the wave equation only in the far-zone limit, The procedure
used in determining the expansion coefficients of the reflected and transmitted waves,
namely that of applying the boundary conditions to the various series in terms of
these functions, would seem to be of very doubtful validity except in the case of a
nearly spherical scatterer. The solution should thus perhaps be classificd with the
eccentricity-restricted approximations, but the region of validity might be difficult
to determine.
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III
APPROXIMATE SOLUTIONS

3.1 FREQUENCY-RESTRICTED APPROXIMATIONS

The vave-function solutions detailed in the preceding chapter have been cailed
exact because it is theoretically possible to carry them out to any desired degree of
accuracy. In practice, however, this presents serious difficulties. So far iittle has
been said about the convergence of the series involved, but it is not hard to show
that this becomes slower as the frequency increases, and as in the case of the
sphere, for a given frequency, the summation indices must reach a value consider-
ably in excess of ka in order to yield any reasonable accuracy. For the scalar
problem with symmetric excitation, the exact solution has been carried out to a high
degrec of accuracy £or certain spheroids at frequencies ranging up to a value of
ka=24, For the vector case, however, even with plane wave incidence in the axis of
symmetry the few existing computations are accurate enly out to ka=<3, and for
other directions of incidence, no computations have even been attempted, to the best
of our knowledge. The need for approximate soluticns which offer reasonable
accuracy at telerable expense is thus obvious, and several of these have been
developed. None, of course, is useful over the cntire ranges of interest in all the
parameiers, and the natural basis of classification is the parameter or parameters

restricted and the ranges of vahidity,
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Perhaps the most important parameters in this respect are wavelength
(relative to characteristic dimension) and ecceniricity. The material properties of
the scatterer may also require consideration, and several investigators have
developed sulutions based on the perturbations of these propertizs with reference to
the surrounding medium; these will be discussed presently. By far the greater part
of the existing approximate theory however, depends primarily on the aforemen-
ticned geometric parameters. We will deal first with the matter of wavelength or
frequency, and begin at the low-frequency end of the spectrum, which is generally
referred to as the Rayleigh region, after the author who provid.d the first systemat-
ic treatment of low-frequency scattering (Rayleigh, 1897).

3.1.1 Low Frequency Approximations

When the wavelength of the energy incident on a body is large co:n-
pared to the characteristic dimension of the body, then ka is small, and this im-
mediately suggests a series representation for the scattered {ield in powers of this
quantity. This series is usually referred to as the Rayleigh series, despite the fact
that Rayleigh's original contribution only yielded the first term. In general itaffordg
the easiest and most universally practical way of obtaining the scattered field of an
object in the region of the spcetrum where the first few terms previde sufficient
accuracy. Its use at higher frequencies is himited absolutely by the finite radius of
convergence of the series, and nractically, of course, by the difficulty of obtaming

the coefficients for tie higher order terms, especially 1n the vector case. Besides

28
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the obvious advauntage that ouce the coefficients are known, the scattered field is
immediately obtainable for any wavelength within the region of effective convergence,
this solution has the further merit that the cases of arbitrary incident direction and
shape and material parameters present no essential difficulty. It is thus the most
general solution known, the only important restriction being that of large wavelength.
To date, the coeff...ients in the Rayleigh series have not been obtained
explicitly beyond the third, or in certain cases the fourth (non-vanishing) term in
the far-field expansion. There are perhaps two principal reasons for this, the first
being the fact that the wrajority of the methods presently available either break down
completely or have not been developed sufficiently to yield more terms, or would
involve a prohibitive amount of algebra, and the second, the fact that the limited
region and non-uniform manner of convergence of the series (cf. Senior, 1961)
seriously restricts the advantages to be gained. The first extensions of Rayleigh's
work were produced almost simultaneously by Tai (1952), and 3tevenson (1953 a),
who developed quite disiinct methods for obtaining the next non-vanishing term

4 * 3
(which is proportional to k in the far field series , the term in k vanishing

ikr
%

The term ''far field" is used here to denote the coefficient of e_r_ in the scattered
field expression, in contrast to th:: treatment below, where the coefficient of

ikr

e . .
~—— is considered.
kr

99
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identically for a body with a cenwer of symmetry). The two derivations have been
discussed and compared by Justice (1956) and will be outlined below. The third non-
vanishing term, proporticnal to ks, was derived by Senior (1960) for the scalar
prcblem with nose-on incidence and either Dirichlet or Neumann boundary conditions),)
and by the same author (1964) for the vector problem with a perfectly conducting
spheroid. (In the latter work on!y the coefficienis in the power series expansions of
the wave-function ccefficients are given explicitly, but from these the Rayleigh
coefficients are easily obtainable.) Additional power series coefficients in the scalar
problem are also given by Senior (1961), but these are not sufficient to ex*end the
Rayleigh series for the far field beyond the term mentioned above. :

For the scalar problem, the Rayleigh series is obtainable in a straight-
forward manner from the exact solution by simply substituting power series ex-
pansions for all quantitie s which depend on k and then rearranging terms and
collecting coefficients of like powers of k. Logically, of course, this procedure
might be termed reverse, presupposing, as it does, a knowledge of the exact solu-
tion and of the functions in terms of which the latter is natu.-ally expressed, and

yielding only an approximate form with a more restricied range of vahdity. How-

ever, the method s easily justified on practical grounds, since 1n the cases where it

"1t should be noted that the statement ot Sleator (L960)also in Crispim ot al, 1963),

that the coefficient of k2 vamishes for the hard (scalar) spheroid, 1s i error, as is

the value given for the coefficient of ki, The corrected curve of cross sectionvs ka is
shown in Fig, 14,
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is applicable it vffers the easiest access to the above -mentioned advantages of the
power series representation for the scattered field. Accordingly we defer any dis-
cussion of Rayleigh's original derivation until the consideraticn of the vector problem
where the exact solution is not kno vn in such generality and _he advantages oi
Rayleigh's methods are thus more evident.

The exact solution for the scalar problem with incident plane wave and
linear homogeneous boundary condition was given in equation (2 24). For the sake
of convenience we now restrict the incident direction to tne axis of symmetry and
consider the limiting cases of the hard and soft spheroids (e/ 3 = 0, m, vesvectively)
separately, witn the chservation that the general impedance solution caa e easily
reconstructed from these. Following Senior {1960) we can write the tar field

amplitude for the soft body as

® s (c,-l)R 3
fS(n)=2iZ on ( °> (3.1)

n=o Non (d)< g€ )

where fs(r/) 1s defined by the relation that if v® is the scattered field in the far zone,
then
ikR
= 7)) ——-— .
f ( E R

(Note that this definition of f difrers shghtly from that used elsewhere by virtue of

: .8 . : :
the & 1in the denominator of the « wpression for V. ) When the gpheroidal functions
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appearing in (3. 1} are expanded in Legendre functions (cf. equations (2. 7) and (2. 17))

their dependence on ¢ is contained entirely in the coefficients, which are either the

d:m of equation {2. 7) or are directly obtainable from them, and by using the
recurrence relation and normalizing equation which serve tn define the d:m , the
expansion of these in powers of c¢ is easily accomplished, at least to a reasonable
number of terms, (see Sen:ior (1960) for details.) If we then write the Rayleigh

series for fs as

© n
Em=-c > u (-ie), (3.2)
S n
n=o

the functions un(n) are found by collecting the coefficients of like powers of ¢ in the
comp:etely expanded form of fs. The expression analogous to (3. 1) for the hard
spheroid 15 tdentical to it except that the radial functions are replaced by their de-
rivatives with respect to £, so that the requisite expansions of these are in terms of

the derivatives of tue Legendre functions. The same procedure described above

applies herc, and the functions \'n(-*)) in the Rayleigh expansion for the far field

amplitude
= n
—1 x s «
f{n=-¢ 2 v (N)(-ic) (3.3)
h — N
n=o
are thus determned. 'There are substantial differences in the two results, 1 that

the functions v , L and \‘g for the hard body vanish wdenticaily, whereas none of
O .
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the first six u functions in the soft case vanishes. The comylete forms for the two sets
of functions are listed for n =0------ S in Sec. 4. 1.

The radius and manner of convergence of the series (3.2) and (3. 3) are dis-
cussed 2¢ tength by Senior {1961), and the details are too involved to be treated fully
in the present work. In general the radius of convergence can be dete rmined by con-
sidering the coefficients in the wave-function (exact) soluticn as finctions of ths
complex variable p==ka and locating the pole of least amp.itude among all the poles
of all the coefficients. For the sphere, this minimum amplitude is unity for both
the soit and hard cases, and the Rayleigh series accordingly converges only out to
the value ka =1, If the sphere is elongated in the directior of incidence, so that a
1s the semi-inajor axis ot the resulting proiate spheroid then ‘he radius of conver-
gence increases for both hard and soft bodies, thougn n a different n.anner for each,
approaching the value ha==4.1 in both cases as the spheroid becomes an infinitely
thin rod. For all values of the eccentricity between zero and one, the radius of
convergence for the hard body exceeds that for the soft, the greatest difference
occurring when the axis rotio 1s arovrd 02 ) where its magnitude is approxi-
mately 2.0, The above discussion applies only for the Dirichlet and Neumann
fooundary conditions, For the general lincar hemogencous boundary condition (2, 22)
tae situation is much more complicated and the comvergence radius can be expected

to deercase as the rutio af 0 departs from the values © or w,




THE UNIVERSITY OF MICHIGAN
3648-6-T

p—

For the vector or electromagnetic problem, the derivation ol the Raylzigh
series is predictably more involved, and several methods have been used for the
determination of the first three terms in the power series for the scattered field.
Two of these are the previously mentioned solutions of Stevenson {1953 a, b) and
Tai (1952) which have since been elucidated and compared in a report i»y Justice
{1956), To date no further tzrms have been derived for the vector case, nor has the
convergence question been discussed adequately, and the predictable accuracy f the
solution rests primarily on a comparison of particular recuits with those given by the
exact solution, as presenied in a later section of this report.

In view of the difficulties inherent in the derivation of the complete Rayitigh
series, and as a matter of historical interest, it seems appropriate to discuss
briefly Rayleigh's criginai derivation of the first term, which he accomplished by
means of a quite general and 'c.markably simple line of argument, The derivation
assumes the existence of a region where the distance from the scatterer is large
compared tc its dimensions but small compared to the wavelength of the incident
field. Here the solution 1s basically that of a static problem, and vnce this 1s known,
the field at a larger distance can he immediately founld from the known properties
of spherical harmonics, The method is essentially the same for both scalur and
vector problems, and the raaterial properties of the scatterer are casily taken into

account, We consider here only the electromagnetic problemfor a homogencous
g s
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ellipsoid of permeability p' and dielectric constant €' in a medium cf corresponding
constar.= i, € struck by a plane wave propagating paralle! to the major axis, In the
interest of readibility and consistency, we will modify Rayleigh's notation to agree
with our previcus usage wherever possible, and accordingly we denote the major
axis by 21?&0 andlet it coincide with the z-axas, The clectric and magnetic vectors of
the incident wave in the region exterior to the spheroid are then represented as

i i -ikz

E =E e i
v

i € i -ikz ,
H = F E e 0
H u «

where El, the amplitude of the incident wave,may be normalized to vnity. In the

(3.4)

neighborhood ¢1 the obstacle, under the assumption that ka is small so that
-ikz L : - .
e =1, the incident electric and magnetic fields are derivable from two scalar

potentials, i.e.
i i 1 i
= E , =
E v, P =y

e [Selvgl, gloey

Nithin this region the scattered field is also derived [rom potentials, which

(3.5)

can in general be expanded in series of spherical harmonics in the form

Q n _ :
. ?ﬁ Z A:’ m/PJ (cosﬁ)vu’br a-1
a0 HEE ) f

S
¢(.,m
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Since there are no sources present, the term with n=0 must vanish, turther-
more in the region of interest, F§ << r << A, the terms withn> 1 are
0

negligible, and the potentiais reduce to

1

. s b
s _ e,m_j . ijg -2
= A p
Qe,m jZ-l 1j 1(005 Bie "r

which may be rewritten in terms of three new constants as

N, 3
g =@e,m}H_Ae,my_:_Ae,mZ)/r
e, m x y z

If we wonsider these constants as the rectangular components of constant vectors

e, m , :
A", then the above potentials can be written
s e, m
p- =-v (A7 /)
e, m =

and the 'scattered' electric and magnetic fields in this intermediate range

2
(1/r>> 1f/r, kr<< 1) become

e
i A
Z‘:-Sz...E1 v( .=_>
r
. m
€
HS=,, J_: El V(Vuﬁ—.> R
-— 7 \ r

These expressions are not adequate to represent the far field, for when kr is

(3.6)

appreciable the magnetic potentia’ contributes to the electric field and vice versa,
To deal with this region we use a Hertz vector representation, noting that any

field may be written in terms of electric and magnetic Hertz vectors as follows
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{see, ior example, Kleinman and Senior, 1963):

B e VAVA 7 +ieuVAT =V (Vo1 )- 21 + ik |% YAz (3.7)
= = “m —e ~e “~m

oS - = . _ - 2 .~ € i

H™ = VAVA 1 -iwe VAT =V(Veq )-Vég -k §y- VA=¢

- —m —e -m —m K

If the vectors T, and 7  are specified as dipoles located at the origin, then
= ~m

ikr ikr
# =—FC P) T = Q (3. 8)

where Ce and C are constant vectors (i e. dipole moments.) Furthermore
-= ~m

in the range where kr =< 0, we have

c c_
T®~—= and g o= —=t (3.9)
- T -m r
so that (3, 7) becomes
C

S —e
E =V(V'z_e)2’V(V‘T) (3.10)

C

<

HY=p (verm )=vly. —2) .
m r

Identifying (3. 6) and (3. 10) we obtain the expressions

c =-k"A%, C --F E AT, (3. 11)

and the far ficld i1s then given by (3.6) , (3.8) and (3. 11), This approximation to the
fieid is thus completely defined once the constant vectors ée and ém are

specilied.  These are obtained by considering the static problem for the spheroid.
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Rayleigh gives the soluticn to the static problem in the tollowing form, If the

impressed field potentials ¢; mhave the form

?

i
¢ =ux+ vy + wz
e, m

e, m
for some constants u, v, w, then the vectors A’ have components

uVK vVK wVK
A . &em,em___em, ,em____em
X 1+K L’y I+K M z 1+K
e,m em e,m

where V is the volume of the spheroid,
K, = (e'/e-1)/ 4

K =@/ /u-1)/d4

E(E2-1) E+1)

¢ 2 O 0 v
L =M=2r{8§ -— logs_lf
o)
{So go"1
= 2 _ 9 - .
and N 4 (50 1) \2 log €0+l

In the present case (3.5), ¢el =y, i.e, u=w=0, v=1, and thus

e e e V(€' - ¢€)

A ThT0 Ayt EEr ) €+l
4re+2mi€ - €) g‘f)- 5 1ogg )
0 Ji
and l’ﬂrln =x, looo v=w=0, u=1, so tnat
m m m Vi{iu'-p)
= =, = - iR
Ay =8y B A g (B2 -1) £+l
Qe p r 27 -p) §f)-*“) log 7
e

Hho .
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In the case of perfect conductivity, €'—»o and p!'—>0 and the expressions

become

e -V m v

_§ _9 )

Ay 3 (gé -1) £ +1)’ A_\ g’o(gz -1) £ +1 (3.12)X
om (€2 - =" log 2° 4m - 27 (€2 - log=>

With these constants thus defined, the scattered ficld of a plane wave incident along

the axis of symmetry may be written explicitly as

S if e eikr m eikr
E =-E {A V/\'\7/\<——/i\>+ikA \7/\<-———’i‘
= y r vy X r X

S € i m Oikr e ejkr/\
S e nval ) ol o (222
u r X 7 r y

X
or alternatively

(3.13)

|=

] i of 5 okr ikr I L
-E Av<v—-——+k2?—-/i\ +ikA_ veT A T }

E =
= y\dy r rooy X
S € i [ ( 0 eikr eikr/\ e eikr A
H = - J: E (A" (v—=—+k i>-ikA V——ANT ).
- u }x \_OX T r X y r y
For the particular case of back scattering (x =y =0) these expressions reduce
to
ikz
f L G @) |
|\(=y=0 y y y
ikz
s .o fEL i, m lk—l,+k? -Ae<lk!-k2) e__ A
x \2 2 y\2 Z X
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and the back scattering cross section

2
lim
o = 4r 22

2
\
e (Ae a™ (3.14)
z>w y x/

I, ||mm

If the spheroid is reduced to a sphese, i,e. if we let F—> 0 and §O -—» @

while Fgo remains fixed, then

£ (g2 -1 € +1
£ - 0(0 )log o _,2
0 2 g€ -1 3
0
and P L i 1
y 4 X 8w

and the expression (3. 14) for the cro s section thus reduces to the well-known
Rayleigh cross section of a sphere,
4 4 9\2
()

Before proceeding with the derivation of subsequent terms in the series, we
note a simple argument given by Siegel (1359) which leads to an approximation to
the Rayleigh coefficient obtainabie with very littie effort. This is based on the con-
sideration that when the wavelength is much larger than the boedy dimensions, the
details of form are rot distinguishable and the principal ¢ ffect of the body depends
only on its size, i.e, volume. The dominant term in the scattered field should

thus be expressible in terms of the volume plus a correction factor indicative of the

general shape. This is verified in the following manner for the case of a plane wave

incident on a periectly crnducting surface alonyg the axis of symmetry,
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The general multipole e pansion of the scattered or radiated field shews that
for the Ravleizh region 4 good approximaticon to the far-zone field is given by the
dipole term alone. This in turn can be found by integrating the field strength
multiplied by the moment axis over the surface, if the former is known., If the

observat.on vint is on the axis of symmetry, the integral reduces at once to the

form J:
J( 7p% a(z) dz
O
where p, z are cylindrical coordinates of the surface, £ is the length, and a(z) is
the amplitude of the field on the surface. (The electric and magnetic fields are
treated in identical fashion and contribute equally to the scattering cross section).
I Pax <<1, i.e, if the body is elongated, then a(z) is slowly varyiug over the
range of integrauon and may be approximated by a constant which, in analogy with
the case of a plane surfac:, we may take to be twice the amplitude of the incigent

field. Under ‘*hese assumptions the far-field amplitude of the electric vector, which

is the sum of the contributions of the electric and magnetic dipoles, becomes

i . .
where £ 1s the incident amplitude and V is the volume. For a general spheroid,
prolate or oblate, the correction factor can be ascertained by comparison with the

exact Rayleigh result, This 1s given by Siegel in the form

-1

——
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__t_)_e-a/b
ra

1+
where a is the axis of symmetry and b is the transverse axis. The agreement

with the true liayleigh coefficient is within one percent for any eccentricity. The

nose-~on backscattering cross section is then

s =48 V‘(+—b—e-a/b)"
192 wa

It is not at once apparent how Rayleigh's formulation could be used to derive
subysequent terms in the low frequency expansion, The problem becomes surprising
ly involved as soon a2s the dynamic terms are introduced, and the details of the
existing solutions are too voluminous to be included here in their entirety. We will
limit ourselves to a generat description of two independent extensions ¢f Rayleigh's
result, which more or less parallels the account given by Justice (1956).

The twu methods to be described are those of Tai (1952) and Stevenson (1933)
and following Justice we will refer to them as the vector mode functicn method and
the potential function method respectively. Both sulutions are based on the assump-
tion of power series representations for incident and scattered fields of the form

. (68 .
I

n=o

(00)
1, S 1,8, . .10
H' = E:H
i L {ik)
n-=o

and the apphicability of the results 1s naturally Limited 10 cases where these

(3. 15)]

representations are valid,  Since the power serws reprosentation 1s unigue

~

Lo
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provided it exists, the two methods mu-t produce equi. 2lent results mn the region
wher:2 both are applicable. They differ, however, in generaiity and range of
applicability., The potential function method is superior in these respects and can
theorc tically be applied to any body for which the requisiie potential problems can be
solved, with arbitrary incide.t {izld and material characteristics, and it can be
carried out to any order de.ired. The 3olut.on is given in det2ii by Stevenson (1953h)
fcr a general ¢llipsoid of arbitrary materiael with plane wave incident in any direc-
tior, carried out to the tr:ird order (the second crder term vanishing as in the scalar
case.) The vector mode function method becomes extremeiy complicated for off-
axis incidcnce and is apparently not applicable for terms beyond the third, It was
originally applied by Tai to a perfectly conducting oblate spheroid with symmetrical
incidence, and subsequently to a prclate one with the same excitation by Justice.
To facilitate the description and comparison of the methods, we will consider here
only the latter problem. The more general results of Stevenson are tabulated 1n the
appropria:i> section below.

If tne mater:al constants of the nedia are incorporated 1n the metrics oi the
field vectors {i.e. 1if Gaussian units are used), then Maxwell's equations can be
written in the form

v./\ _}_‘;=lkﬁ, v/‘\\ﬁ:_lk}é
(3.16)
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Also if i 1s the unit normal to the scattering surfacs, ithen for a perfect conductor,

the boundary coaditions take the form

AAE =-GAE, Q-1 =--10° (3.17)

A T

Equations (3. 16) and (3.17), along with the radiation condition on the scattered wave,
constitute the mathematical statement of the problem, and on combining them with

(3. 15) and equating coefficients of like powers of k, there results the set

i, s i,s i, s i, s
TAE’S =TCAH’ =T-E’ =V-H’® =0
=0 =0 ~n =n
everywhere (3.13)
__/\Ex,sz Hl’s. VAHI’S=-E1’S
1 n-1 n =~n-1
y 3 i S i
i Ag:=-ﬁ/\§;, ne §n=-ﬁ° B’n on the surface. (3.19
Furthermore, by the divergence theorem,
j’ﬁ.g;'sds =5’x§-§;’s ds = 0 (3. 20]

where the integration is over the surface of the scatterer.

These equations form the basis of both methods of svlution, and despite
their apparent simplicity, 1t develops tha: the procedures required and the forms
evolved 1n either method rapidly become highly comple s and voluminous for the
higher order terms, so that we must limit vurselves here to a general description and

refer the reader to the above-mentioned sources for the details of the methods.
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In the vector mode function method, the next step 1s the repeated application of
the curl operator to certain of the equat.ons (3. 18), to yield at once the vector
differential equations

s s
CAVAE =VAVAH =0
(3.21)
> = H,
TAT AYVA E “VAVAYA H, =0

Tine problem then is essentially that of representing the incident and scattered fields
in terms of solutions of these equations and the first of (3. 18) which have the proper
types of radial dependence and which permit the satisfaction of the bounda.y con-
ditions on the scatterer. Considering the limited available knowledge of general so-
lutions of these types of equation, this process 1s necessarily more inductive than
deductive, and it is easily inferred that a thorough study of the intimate character-
1stics of the spheroidal system must have been requ.red for its completion. The

. : . i, s
process staris with the formation of two sets of spheroidal harmd nics, ¢O’ and

L z),s whose gradients satisfy the boundary conditions on g: ® and ﬂ:)’ S re-
spectively. These gradients automatically satisfy the vector equations given above
as well, and from them mor vector solutions can be furmed i a manner similar to
the construction of Hansen's vector wave functiens. The spheroidat harmonics, as

powinted out 1 Section 2,1, are easily constructed from Legendre and trigonometric

functrons, Specihically, we can write
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m
P (€) cosm P )
g =p(m] ° { (3.22)
mn G m
L& | |sinm§ l

with the choice oi ¥ or Q functions determined by the desired behavior as {—> o,
and that of cos or »in by the required § -dependence. The gradients of the first two
sets of these potential functions are required to satisfy the boundary conditions @, 19)

i,s

i, S
’" and H
o

on E

, and the additionai vector solutions necessary for the representa-
o

uon of the higher order terms i the field expansions are expressed as linear com-
binations of certain of these harmonic functions and their gradients, multiplied in
the appropriate manner by certain recta:guiar cr spheri.al coordinate vectors. The
choice of an adevuate set of such functions for the representation of the incident and
scattered fields and the proper construction of this representation is an inductive
process too complicated to be described here in detail. In general it entails the ex-
pression of the first three terms 1n the incident field expansion in terms of five dis-
tinct vector mode functions, chosen on the basis of their angular dependence, and
several aroitrary constants not uniquelr determined by the incident fieid alone,
Each of these five functions 1s associated with a corresponding function 1n the
scattered field, and the boundary conditions, including the radiation condition on the
scattered field, are applied to each mode individually, U the various functions and
combinations have been properly chosen this process determines uniquely all the

constants appearing, and the solutim of the problem s complete out to the third
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term in the power series expansion., It should be noted that aside from the tre-
mendous crease in complication whizh would result from consideratior of terms of
stilt higher order, the method would apparently break down completely, since it has
been shown by Stevenson that the terras beyond the third in the scatterec field do not
satisfy the radiat un condition individually, but only collectively, and without this
condition on each mode it is impossible, by the present method at least, to deter-
mine all the unknown constants involved. Some of the explicit forms evolved in this
solution are tabulated in the appropriate section below.

In the potential function method developed by Stevenson the first steps are the
same as in the previous method, It is a trivial matter to find potentia' functions

¢(i), »; whose gradients match the first terms of the incident field expansions, and
the {irst equations of (3.18) and (3.19), together with the required behavior at

infmaty, then define standard Dirichlet and Neuraann problems for the potentials

s s . s & .S S
$”, v, respectively, suchthat E- = v ¢, H = Vg . The next stage, how-
0 o o) o To 0
s
ever, cannot be reduced to potential problems alone, since gl , and _lj? are not

irrotational vectors. The procedure is (v write ¢ach of these as the sum of an
irrotational and a solenvidal component. The electric vector, for example, is
written

S S

s =F +°¥T (3.23)
E =F +v§

Where gl has zero divergence, vanishes at infinity, and satistics the equation
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s
¥ . =H 3.24

VA E; =8 (3.24)
and ¢T is therefore an external harmonic function which must satisfy the boundary
condition

AAchS =-2 [F +1~:1;| (3.25)

1 =1 =1

Determinaticn of ¢T is thus again a standard petential problem, once the particular
solution gl of (3,24) having required properties is found. I the right hand side of
an equation of the forin (3.24) vanishes at infinity at least to order r—3 and if its
divergence is zero as well a5 the integral of its normal component over the scattering

. . : . : . S
surface, then we can write an integral expression for the solution which, since _}_IO

satisfies these conditions, in this case has the form

-

1 s 1
F =\7/\—'§H « = dv (3.26)
-1 dr /=0 r
where dv is the volume c¢lement, 1 is the distance between observation and inte-
gration points and the mtegration covers the cntire space, including the interior of
s
the scatterer, In order to complete the definition of this integral, thatof gn nist be ex-

tended to cover the interior of the body ., Since j_lz satisfics the latter equation of (3.20)

this canbe done by finding ur internal harmonic function l’”ii such that

s s s o
Ao’ =h.Hu =h T (3.27)
N1 -0 (0]

on the surface, which 1s an ordinary Neumann potential problem, 8y making uoe ol

the form




TR 5

PR AN

THE UNIVERSITY OF MICHIGAN
3648-6-T

we can write finally

~
l l\ o
gS=— Jv;;SAv<—) dv + j TS AT (l) dv| +vp°  (3.28)
=1 4z o r oi r 1

E
where the first integral covers the exterior of the scatterer and the second the

interior, and 9)? is the potential satisfying (3. 25) with E_‘l given by (3.26). The

magnetic vector gf

s _ 1 s 1 s 1 s
= ——— v v -_— + v /\V -— - +v 1.:'_‘)
f 2 g ¢O A (r> v S\ ¢01 :‘,') dv '1/1 (3 9)

=1
E 1

is constructed in analogous fashion and can be writtex

with ¢(S), ¢(s)i, q’/i defined by standard potential problems as before.

The procedure for finding the next term in each series is similar to the above,

S

S
but here the situation is complicated by the fact that _}il and _};l vanish at infinity

-2
only to order r , and the integrals corresponding to (3.26) a.e accordingly

d» ergent. This difficulty can be overcome by constructing another pair of external

s
le

some surrounding surface Sl exterior to the scatterer, which can be arbitrarily

. @S e S s
harmonics y)le, ¥ whose normal derivatives match those of I_;l and Hl on

large. We can then write for the electrie field

S S
E.=F_+ {3.30
E,=E,+ ¥ ¢2 { )
with ¥ given in the region § < gl by the form

-9 o
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1 ( ! S -]; ( ' S .]:
fz' S _Iisl/\V(r)d\H- B T ¢ H/\V(r)dv + S v z,le/\V(r)dv
£,<E<E, £<g, £>¢,
(3.31)
(Here gie is an internal harmonic whose normal derivative matches that of ;’ion 50.)

For &€ > § 1’ however, this expression is of no use, since here it yields

VAF, G Vwie # Ei » and thus the function ¢§ is not yet determinable as an

2

external harmonic, We are forced to resort to asing another type of expression for

the field vectors consisting of surface integrels, of the form

E"S :ikSa AH"SP ds + v/\jﬁ‘ AE" P ds -v S\Q' E" pds  (3.32)

ikr

e
where § = 7

ar T is the d:stance from apointonthe surface to the field point, and

the Integration covers the scattering surface in each terin. When the field ex~-
pressions (3. 15) and the standard exponcntial series are substituted here and
coefficients of like powers of k are collected, there results a set of equations in the

i, s i, s

components _E_:n’ %, H * ", of which the pertinent one for g; is

il

A 1A 1 A
amE=\= EAHS ds+‘c*/\L EAE ds+>CA\rEAE ds
=9 r -1 Jr 9 5 o

JRAN s 1 N s .
“C\= €. E ds-=v \r&- E ds (3.33)
r =2 2 =0
{The remaining terms which apparently enter con casily be shown to vanish.) The

1
second term can be written in terms of the known tunctions E by virtue of the
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boundary condition (3. 19), and substituting (3. 20) in the fourth term, we can

write

S s'
Ey = FI_+V ¢2 (3. 34)
1 A i
with 47 F' = L ? /\Hsds—VA (.— EA E1 ds
it r =1 ) r =2
e
1 A 3 1
+'-\7/\\ r§ AE® ds -—\“’gr§° Es ds
2 J -0 2 y -
1 A
-Vl= €&+ F_ds (3. 35)
r —2
and
s' 1A S
=~ L % . .36
vh, T&r § p, ds (3. 36)
The value (3, 31) for F 5 Can now be used in the last term of (3. 35) and F’ 5
is thus completely determined, and furthermore it 1s easily shown that both éz and

: e s' . . . .
E_'Q vanish at infinity, so that ¢2 is an external harmonic function and is thus de-

terminable by means of the boundary condition given by {3.19), (5.34), and (3, 35).

2l

is periectly analogous.

N @

is now complete, and that of H

The determinaticn of E

no

Stevenson makes the statement that the general method desceribed here can be
carried out to "ny order desired. However, the success of the method with higher
order terms depends on the ability to find particular functions g«‘_n te represent the
solenoidal components of cach term, and furthermore the fact that the tield com-

S 5 .
ponents b.l » H - donot vanish at inhmity for 1 > 2 renders the problem of finding
-n n
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the irrctational components T )éz more difficult. The details of how these diff:-
culties might be overcome have not been published.

Another difficulty vith this representation arises when the far field 1s
crasidered. The behavior of the higher order terms indicates that the given series
beccmes useless as r increases without limit, A new representation, however,
which is valid everywhere outside a2 large sphere surrounding the scatterer, can be
derived in a manner similar tc that used by Rayleigh to obtain the far field repre-
sentation from thai of the near field. In the paper of Stevenson that is accumplished
by writing the general expressions for the components of an exterior £ (or TM)
wezve and an H(or TE) »ave in terms of spherical wave functions and expanding the
radial components 1in double power series in k and R. Each coefficient 1n the radial
componert of the near-ficid series determined earlier 15 then expanded in powers of
R and ine two expansions thus cbtained are compared, term by term, yielding a
seneral relation between the individual surface harmonics mvolved 1n the expression
oi the far fieid and those of the near fiela, Onice the latter are obtained from the
previous analysis, the far-field cxpressions are easily written down, It develops
also thai no accuracy 1s lost 1n passing from the near to the far neld, i.e.,
knowledge of N terms in the near-field series gives at once N terms of the far-ficld
series, The explicit expressions for the far field are given in Sectionn 4.1,

Stili ancther method of deriving the vector Rayleigh series s deseribed

by Semor {1963, This 1s perhaps more straighttorward and schematically simple
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than e:ther of the above methods, and there are no analytical difficuities in carrying
it out to any arbitrary degree; however, again the quantity of iabor involved rapidly
approaches a prohibitive level as the number of terms increases, and {o date the
forms have been worked cut only as far as those in the previous solutions, and only
for a conducting spaeroid with plane wave incident nosc¢-on.

The {irst step 1n this procedure is to exgpand the incident and scattered
tields 1n terms of appropriate sets of Hansen's vector wave functions. The question
o1 optimum choice of these sets is still more or less open, but for reasons of
simplicity and generality the oncs chosen were based on the radius vector r, and
vith this basis and with the assumed incident field, the only sets of vector functions
resulting are the Mg 1n and I_Jeln, as defined in (2, 43) with r replacinga . In

0

particular the scattered electric field has the representation

0
Z A Mo +B Ne, ) (3.37)
n— ln

with the coefficients An’ Bn as yet undetermined. The vector functions may be
expressed in terms of the prolate spheroidal coordinates by formulas analogous to
those of (2,49), and using these forms and the explicit expression for the ncident

electric field, which is
A A 2 ) “1¢&7 A =1eET]
E- g ’/ —2—2-:-)2 ¢ " cos § —1¢e . Ismﬂ, (3. 38)

the boundary conditions on the surface (2. 46) become, after some manipulation,

8')
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3)

D
21 An‘{ﬁ Elln-cz PE -1) + ﬂ (2 -s, (e, n)R(ln
n=

(c, £)

{3)
~2EnE2 ~1K1-%) 8! (e, nm‘ ’(c,s> 2(g2-17 775, (e, ””‘(m' (e, €)

2 2 2 r 3 L QY " (3)'
HE?-1NE2 -7 )(l-nz)!_sln(c,m-T.Sln(c,ni] <v,s>}

@
A | Fn'l —
2D 3 ere?ont)s, (o, B (e, 6) (- M EIHERE (2 22 na-n®)
In In n{n-1)!

and (3.39)

(80]

B

D §(_§2 -1) (3) n(i- 7 (2) _1
Lo {-C—[Sl( ri)R ( Sln( f))R ( g)-r—(gz———n—‘z\ ( n)Rl (C’lj

")

oy 8Ll ;’ a. [&s' (C,Tl)h( )\c,g) 7S, (e, T))R( )u:,

n £2 -

L__ -J

n-1
+(-i)n_l % J(Ez -1)(1 -n?) }=0

where £ is the coordinate of the scattering surface and the primes indicate differ-
entiation with respect to € or n. All quantities appearing here which depend on ¢
are now expanded in power series. These include the coefficients An and Bn, the
eigenvaluve Aln’ and the spheroidal functions, which must be expressed in terms
of the corresponding sets of spherical ones, The magnitude of the task now be-
comes apparent. It 1s not hard to show, however, that once these expansions are

inserted and the coefficients of like powers of ¢ collected, the result 1s an

e
oa
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essentialiv triangular svstem of equations n the coefficients n the power series ex-
dansions of A , and Bn’ so that these can he determined sequentizily out to 2ny order
desired.  Agam, the explicit forms will be tabulated later.

One more attack on the scalar probiem might be discussed briefly here,
thwgh from the standpoint of gene rality and rate of convergence it might equally
Al be clussed us an exact solution. This 1s the Schwinger variationul techniquez
for the solutivn of uan integral equation, as applied to the problem of a hard spheroid
A1th nuse-on plance wave mncidence by Sleator (1950). The formulation cf the integral

equation for the velocity potential of the total {ield 1s standard procedure, and the

equation may be written

w!

-1 1 C I
fir)=e thz vy ) ¢(1”')(%;C‘: {r, =) da' (3.40)
C

. oG{r, '
where r 1s the field point, r’ wne source point, "—’g—J——L s the normal derivative
n

of the {ree space Green's function, and the integral covers the scattering surface S.

Direct application of the boundar: condition

(3.41)
:? #(r) = 0
) I
to (3.40) gives
2 =1k l 1 2 .
o B Pir') . G{r, r'yda’ (3.42)
an Ig 4r 3 Jgnon'’

It has been shown by Jones (1956) that this technique 1s n general equivalent to a
method developed earlier by Galerkir (1915) for the solution of certain types of
integral equations,
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{The formal differentiation under the 1ntegral 1s not obviously legitimate, since the
resulting intsgrat 1s apparently dmvergeni. This difficulty, however, can be cier-
come by proper treatmen! of the easuing forms, and a slightly more complicated but
equivalent formulation would obviate 1t completely.} The Schwinger technique is to
define next the quantity

326G (r,r"§ (r')da da’

oncn'
a Akz R :
]

{
’)SS (r)

piry— da
N

Gt
=
-
Lo
I}
] -

(
J
S
and 1t can be shown that the potential $(r) 1s then the solution of the variational

problem 6J E¢} = 0. It also follows that the total backscattering cross section :

given by the formula
oc=azlg l” (3. 44)

where JO is the stationary value of J[ﬂ] . It might be noted here that the usual
procedure with this mechanism 1s to assume a simple trial fuaction for the surface
potential @(r'), for which the integrals are more or less manageable, Since the
error 1n the result 1s proportional to the square of that in the trial function, the
calculated function should be more ac:urate than the original one, and the process
can be 1iterated if necessary. In certain cases of separable geometries, hoaever,
the 1terative scheme can be replaced by an expansiun process. Specifically, if the

urknown function P(r) 1s expanded 1n terms of an apprupriate set .f angle functions

o
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with cveilicients which, 1n 2 symmetrical problem, are functions only of the radial
variable, application of the stationary condition to u{ﬁj vields at once an infinite
system of cquations for these coefficients, whose solution, if it exists, gives an
exait representation of the unknown function ${r). As a matter of fact, if the basis
functicas useda are the standard orthogonai egenfunctions of the problem in question
and if the Green's function is similarly expanded, then the integrals are all tractable;
the infinite system is diagonal, and the soluuon 1mmediately reduces to the standard
wave function solution discussed previously.

In the work of Sleator, however, the sphero.dal functions, which are the
natural basis for the «xpansions, are by-passed in an eifort 10 simplify the numerical

treatment, and the potential 1s expanded directi; 'n Legendre functions,

BE.m =) A ©P M, (3. 43)

Substitution into {3. 43) and application of the stationary cendition

vd
aj\ =0 for ali i
u
ylelds the infinite system
ZQ A C =47 B v =01, 2--- (3. 46)
U VR £ 1

wWhere

2

- P J 3.47

LUL S u ! — G(r, r')P_(1') da da' ( "
< dnon v
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B = eru(”) cin e ¥ qa. (3. 48)
S
If a Fourier mntegral representaticu is used for the Green's fuaction n (3. 47),
then by rearranging the 7-fold integral that results, it is possible to carry out all
but one of the integrations in closed form. The last integration, huwever, 1s
apparently best handled by numerical or graphical techniques. The system (3, 46)
can be proved convergent and can therefore be solved 1n truncated form tu any or.der
desired, The integral in (3. 48) is immediately vbtainable from known forms.

It is thus possible to ubtain an exact sclution to the spheroidal scattering
problem without resorting to the spheroidal wave function, but the amount of labor
involved in evaluating the integrals (3.47) and solving the system {3, 46) make 1t
questionable whether this method is preferabie to the one previously described, At
any rate, the number of terms required .n the series (.43} mcreases with the fre-
quency in the same marner as n the wave-function soiution, and the quantity of
labor nvelved rises much more rapidly, so that for practical purposes the vari-
atioral solution 1s perhaps justly classified as a low -frequency approximation.

An analog: us formulation of the vector problem 1s much mor¢ complicate d

and leads to integrals which appear prohibitively difficult to cvaluate.

3. 1.2 High Frequency Approxtmations

As indicated i the previous section, the extensin of Jow -freguency approsi-

mations and techniques to cover the regions where the body dinensions oxeeerd ol
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even approacn the wavelength of the incident radiation 1s fraught with difficulties of
several Kinds, principal of which are the inerdmate amount of labor required in de-
riving the successive terms in the field expansions and tke limited range of cou-
vergence of the results. One aight hope for better luck at the other end of the spec—
trum, and indeed the situation does turn out to be more favorable there. Various
methoeds based on optical laws have been developed in considerable g:nerality, and
when applied to the spheroid problem some of these produce reasor.ably good
appreximations which, under certain circumstances at least, extend well into the
resonance region, These circumstances usually involve limitations on so.ne other
parame’er, however, so that it cannot be said that the problerm is completely solved.
Before gning into these combined restrictions, we will mention briefly the hmiting
forms of the exact solution when the frequency increases indefinitely, In the
interest of simplicity, we consider first only bodies which are perfect conductors,
The modifications of the theory required to cover diclectrice bodies will be
developed later,

2

3.1.2.1 Geometric and Physical Optics

The ultimate forn of any seattering phenviticnon as the wavelength de -
creases {which form c¢nn of course be termed the first approximation for small but
fimte wavelength) 1s completely describable in terms of the laws of geometrie aptics,

In this bt the seattered field of any smooth conves conducting body 1s determamed
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at any exterior point entirely by the curvature of the body at the specular print, 1.e€.
that point on the surface where an incident ray and a reflected ray through the obser
vation point are coplanar ‘vith the surfcce normal and make equal angies withit, It

is not hard to show that if R, and R_ are the princ.»nal radii of curvature at this

1 2
point, then the scattering cross section o is given by the expression
= R ..
g.C. 4 R1 2

At the tip of a prolate spheroid, the principal radii are of course equal and have the
value b%/a, so that for nose-on backscattering we can write

o =7 b/ al
g.o. :

and this is customarily used as a normalization factor for values of o obtamed
otherwise. These results are also derivable in terms of a limit for vanishing wave-
length of a more general, frequency dependent result (se., for example, Siegel et al
1955), which is considered below. Also it 1s shown by Crispin et al (i855) that in
this limit for sufficiently smooth bodies, the geometric vptics cross section with
transmittc r and receiver separated by an angle /5 1s equal to that observed if both
are located on the bisector of this angle. In the former reference an expression is
derived for the geometric optics cross section as a function of the separation angle

£ with transmitter located in the axis of symmetry. For the range /5« 7 this 1s

H
o (%) =47 bt a2 wa.‘?(l S COs 1) +~l)2(l -cos ! {3.4Y)

J
.
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By the above theorem, this exprecsion also gives *he monostatic cross section if
transmitter and receiver are both locatec at an angle 3/2 with respect to the major
axis of the spheroid.

The question of the accuracy of these results and the lower limit of the
frequency range in which they can reasonably be appl.ed is not easily answered.
Undoubtedly this depends on the eccentricity of the body and aisc on the d.rections of
incidence and observation. Some indication of this is furnished by the fact that the
geomeiric optics result for nose-on backscattering from a paraboleid, which s one
limitung form of a sphero:d as the eccentricity approaches unity, is indeed exact.
The scarcity of data, either theoretical or experimental, ac high freguencies makes
it difficult to establish 1n general where the optical iaws become dominanl. Recent
work on the scalar grublem for a spheroid of axis ratio 10; 1 (Goodrich and
Kazarinoff ,1962 ) indicates that there are resonance jhenomena occurring even in
the range ka =210u for this body, and 1t 1s clear that in general the geometric optics
result is of limited value tn most practical problems. The underlying principles,
nowever, form the basis of a mure refined geometric approach which will be dis-
cussed presently and winch has proved both physically illuminating and practically
uscful,

Before dealing with the latter, we will cunsider « somewhat simpler but
still sometimes usefnl approach based on Huygen's princips » (otherwise known as

Kirchhot! theory,) This s the well-nnown phy sical opties solution, which s
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discussed at lcagih for the sphere problem in the first report of this series. The
qualitative aspects of the spheroid solution are gencrally similar to those or the
sphere though the specific forms are of course mere complicated and, to the best
of our knowledge, have not been wourked out in as great detail. Accordingly we here
content ourselves with a rather brief formulatior and listing of the available results,
The essentials cf the Kirchhoff theory can be embodied 1n the formula
ikR\

S___l_ — (€ _
gy 5('}\/\&)/\\ ( R) ds (3.50)

S

ey

where H 75 the total magnetic field on the surface, (herc the tangential component
may be used since the normal component is eliminated by the vector product, )

f is the unit normal out of S, and R is, as usual, the distance from a point on the
surface to the field pouint. The integration covers the surface, and if the true value
of His employed, the expression is exact. The physical optics approximation,
however, which represents the principal utility of the form, is based on the sub-
stitution of an approximate value of H, specifically the value given by the geometr.c
theory for a locally planc surface, which 1s twice the tangential component of the
incident magnetic field in the illui-inated region and zero in the shadow region,
Even with this approximation, the evaluation of the integration (3. 50) 1s not trivial
In general, since except in the case of symmetrical incidence, the shadow curve,

which bounds the region of integration, ravolves both angular coordinates, and the
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quantity R is itself a complicaied expression. If we consider only the far-field
scattering cross section, however, some simplificatior is possible, and if the
incident field is required to be a plane wave propagating along the axis of
symmetry, a simple result is easily obtained for the backscattering cross section.

Consider irst the case where the transmitter is located in the axis of
symmetry, which we takc 1 be the z-axis, emitting a plane wave of unit amplitude
with magnetic vector

i -iki +r
’i\\{e z - (3.51)

oo
"

and the receiver is at a large distance {ron. the scatierer, separated from the z-
axisby ananglef, Ifr =r ? is the position vector of the observaticn point and 1!
that of the integration point, then the gradient in (3. 50) can be approximated by the

form

ikR eikr ik} .
V(e )3—-—- (-ikPe £
R r

and using this and the approximation specified above for the field H on the surface,

we can write the scattered field, after some rearrangement, as

s ~ ik eikr"" A N
Hbg_-.._l./i\(r. MR (3.52)
= 2r r I_x - T x4
with
A A
—ilerte i +7r
{ = Sﬁo L P! (3.53)

Pl
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S' being the illuminated region of the surface. For the case of backscattering, i.e.
T ='§Z, the second term in the bracket in (3. 52) disappears and the far field

ikr
. . . . . € .
ampliiude, which is the coefficient of -l Ty in (3.52), can be written

F(0) = ‘; Snze 212" 4o (3.54)
S!

where B is the z component of the cutwarcd normal and 2z'is the z coordinate of
the integration point.
When the above formulas are applied to the prolate spheroid, the resulting

expression for the nose-on backscattering cross section is easily found to be

2
2k k
. =__ [l_sm a (su:\aa) :l (3.55)

The function in brackets is plotted for a 10: 1 spheroid, over a limited range of ka in

Fig. 24, along with various other solutiors. The expected discrepancies in the re
gions of large wavelength are apparent at once. For larger ka, the oscillation
about the geometric optics value scems reasonable, but a close comparison of the
analogous form tor the sphere with the exact (wave-function) solution (sce Crispin
et al, 1959) indicates that there 1s hittle correlation in e¢ither phase or amplitude, ati
least until the oscillations in both solutions become very small,  Also the above-
noted results of Goodrich and Kazarmnotf on resonance phenomena indreate that this

may occur only at extrewredy large values of ka, at least for thin spheroids, It s
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thus difficult to say in general what or where are the advantages of the physical opticy
result over that of geometrical optics.

For more general angles of incidence and observation the integral in (3, 50)
is not so tractable and few results are available, Application of the stationary phase
principle yields only the geomet- ic optics form (3. 49) (see Siegel et al, 1555)., For
any given direction of incidence, however, there is one observation direction in
which the integral can be eva'uated exactly. This is the direction for which the nor-
mai to the plane of the shadow curve bisects the angle between :ransmitter and

receiver, this occurs when

BY _a% -p?
2y 2 ; e
tan <2 . sin Bl cos

where 3 is the angular separation between transmitter and receiver, Bl is the
angle between the axis of symmetry of the spheroid and the plane of the shadow
curve, and

0% =a? cos? B+ b? sin” B,

/
Letting M = kp cos Kg) , one obtains the cross section in the form

2
5 = X2 b4 iri—Sh 2M ([sin . (3.56
4 M M - 56)

p

Here again it 15 difficult to judge the accuracy of this {orm in general on the basis

of any available information.
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There are two principal sources of error in the general physical optics
procedure, one being the approximate evaluation of the integrals and th> other the
diserepancy between the assumed values of the field on the body and the true vaiues.
The former is essentially a computational problem, with which we will r.ot concern
ourselves at present. Rather we will consider certain modifications or refinements
of the assumptions on the surface fields and the resulting corrections to the geomet-
ric or physical optics scattering coefficients. One such refinement is due to Jones
(1957). In this article only the total scattering coefficient (total energy flux in the
scattered wave divided by the energy flux in the incident wave striking thc obstacle)
is considered, and it is chserved that in this regard, and in the optics region, the
different regions of the surface contribute independently. The main w.akness of the
physical optics assumption on the surface current is in the region of the penumbra,
1.e. the newghborhood of the shadow curve, where it is assumed to be discontinious,
in violation of the actual b::undary condition. Jones accordingly assumes a different
distribution in the penumbra region and determines its effect on the total scattering
coefficient, For a smooth convex body the field in the penumbra is taken to be locaily
that of a cylinder whose generator is tangent to the shadow curve and whose radius of
curvature 1s that of the given body 1n a plane normal to this tangent. The total con-
tribution of the penumbra region to the scattering coefficient 1s then formed by in-

tegrating along the entire shadow curve.

T
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Consider first the scalar problem and assume a plane incident wave with
unit epergy per unit area normal to 1ts propagation direction. Then the total scatter-
ing coeffizient arising from the illuminated region proper has the value 2, and if 3
cylinder of radius R is oriented so that its axis makes an angle 5 -+ with the

incident direction, it can be shown by means of the exact solution that the energy

scattered per unit lengtn by the penumbra region 1s

(]?. cos B\)l/ $
b \'—=
(¢] W K /

where bO is a coefficient which incorporates the effect of the boundary condition,
and whose values for the usual cases are given in the tabl. of results hereafter.
Applying thi; local analysis to a three-dimensional (convex) body, with the stipulation}
thar the quantity, kR cos £ must always be large, 1t follows that if D is the shadow
curve, with differential arc length ds, and SO the projected area of the body on

a plane ncrmal to the incident direction, then the total scattering coefficient is given

by the formula

Cos B ds (3.57)

which, for a prolate spheroid with nose-on incidence, reduces immediately to

23
=242 = . :
(8} T b ,\‘\l)2> ({. 58)
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For broadside incidence the integral is slightly more complicated, due to the

variation of R, and yielas @ hypergeometric function, so that

2b

- 0 2 1 bz) .

c_=2+ F{\-=, = ;1 -= (3.59)
2/3 271 (3’ 20 T2

T

The treatment of the electremagnetic problem for a conducting body is
gsomewhat more complicatec. The contribution of the penumbra region of a ¢ linder
must first be ascertiined, making use of the proposition that if the incident plane
wave is independent of the axial coordinate, then the total field can be dec smposed
into two parts, for one of which the electric vector is paraliel to the axis and satis-
fies a Dirichlet boundury condition, and for the other the magnetic vector is in this
direction and satisfies a Neumann condition. These components can accordingly be
derived from the solutions of the standard scalar problems, as indicated in Kleinman
and Senior (1963). In the present case if we write the scattering coefficient for the

scalar Dirichlet problem with incident direction normal to the cylincer axis as

- -2/3
=92+
o bD(kR)

and that for the Neumann problem as

-2/3
~ 24+
ON ot bN(kR)

(i.e. let bD and bN be the specific values of the coefficient bo referred to above)

then it develops that the contribution of the penumbra region on one side 1n the

at,
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electromagretic case, with in:ident direction making an angle = -2 w.th the cylinder

(CNEY

axis and electric vector an angle ~, is

/R cos 2 1
l b_-b )sec 3
& ) L°N *(bp 0y cos _,‘
and accordingly the total electromagnetic scattering coefficient for a three-

dimensional object, with the angies now referred to the tangent to the s:adow curve

in place of the cylinder axis, becomes

G = 2+—— j[b —(b -b )sec*ﬁcos?‘ *_](Rcos,J) /3 S. (3.60)

D
For any solid of revolution with symmetric incidence and radius b of
the shadow boundary this reduces at once to

e ( D Py)

GT-— . 4/,3 (3.61)

which 1s the average of the coefficients for the two scalar problems, and for the

prolate spheroid, since R=a%/b, 1t becomes

T=2+(b +b) <kb2 ) (2.62)

The two coetficients for broadside wncidence (i, e. electric vector parallel or per-
pendicular t¢ axts of symmetry) are expressible 1n terms of hypergeometric func-

tions, as in the scalar case, and the explieit torms are tabulated later,
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2.1,2.2 Modified Geometrical Theory

The simplicity of the above development is of course due 1n a large part to
the fact that it ia concerned only with the total scattering coefficient. The problem of
refining the optical techniques to give signif:cant improvements in the differential
scattering or radiation pattern results 1s cons:derably more complicated. Perhaps
the most notable contributions in this direction are the theories developed by Fock
(1946) (see also Goodrich, 1959) and Keller (cf. Levy and Keller, 1959), Both of
these become rather imolved for three-dimensional problems and depend more un
phys:ical arguments than on mathematical techniques. Both lead directly to the su-
called creeping wave theory, which is also supported by the more mathematical de-
rivaiion based on asymptotic expansions and the Watson transform to be discussed
later, and all of these, at least in regions where they are applicable, produce
essentially identical results, certain of which are preser‘ed in the appropriate sec-
tion below.. It 1s beyond the scope of the present effort to give the detailed dernva-
tions of these results, but we present here a brief account of the principal arguments
and assumptions on which they are based. We will concern ocurseries primarily with
Keller's formulation since this ha. been worked out more explicitly and compre-
hensively than the others and thus appears to have 8 wider range of applicability, The
theory has been developed 1n general terms for both vector and scalur proble ms in-
volving snmicoth convex bodies of more or fess arbitrary shape and material proper-

ties, and the particatar resalts tor the scalar sphorond probicm with s* mmetrical
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excitation and either Dirichlet or Neumann boundary condition have been given by
Levy and Keller (1959), who aiso give the nuse-on backszatiered electric field, which]
in the optical limit 1s easily ol.tainable 1n terms of the scalar results. In addition,
the case of a4 dielectric spheroid has been treate i with similar methods by Thomas
(1662),

The principal restriction in the theory in question, aside from the require-
ment of sufficiently smail wavelength, is that the media involved should be individ-
ually homogeneous and 1sotropic, so that the radiant energy travels n straight lines
normal to the wave front, except on the boundaries of the media, where it follows
the geodesics 1n accordance with Fermat's principle. At each point of such a tra-
jectory, or ray, the field has a well defined (vector or scalar) amplitude and phase.
The latter 1s assumed to vary continuousiy and uniformly with the distancc along the
ray except at a focal point, where it suffers a drop of #/2. The amplitude is de-
termined by the source of the ray and by the energy co ervation law as appiied to
the various pnenumena which 1t may encounter, For a vector field, the direction of
the amplitude must be normal to the ray, and it 1s assumed to remain constant ex-
cept at a boundary, where it 1s governed by the usual laws of reflection and trans-
mission, At any point in space, the total field is the sum of the fields on all rays
passing through the point, These can be classified in one of four categories accord-
ing to what betalls them between source pomnt and field point;  1ncident, 1if no inter-

ruption vceurs; reflecied, it an optical retlection oceuars; refracted, of the ra,
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jpasses through more than one distinct mediuny; diffracted, :f it follows a boundary
fo. a finite distance. For a convex scatterer .here is no overlapping of these
categories unless the body is penetrable, in which case a refracted ray may also be
reflected internally. The laws governing the behavior of the first three kinds of rays
are familiar enough, but the fourth requires further comment. A diffracted ray is
broduced wherever an incident ray is tangent to a boundary surface. From suich a
point the ray follows a geodesic, at each point of which it splits and originates a new
ray which leaves the surface tangentially at that point. Thus a diffracted ray from
tl.e source to a given field point consists 1n general of two straight line segments
ftar.gent to the obstacle plus a geodesic arc connecting the points of tangency and
tangent to both lines,

The number of rays connecting a simple sourcc with a given ficld point 1s in
keneral finite and for simple configurations quite small, but there are exceptionai
regions, lines or surfaces, called caustics, which are envelopes or accumulation re-
pions of families of rays from the source (they may alternatively be defined as the
loci of centers of curvature of the wave fronts), For field puints in the neighborhood
“f one of these, the sum referred to above apparently becomes infinitc, and the
kheory must be modified tn a manner to be noted below, The diffracting surface 1s
itself a caustic, and in rotationally symmetric problems,; the asis of symmetry is

hlso one. For reflected rays the caustics are more complhicated,
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On the basis of the above, expressions are derived fairly easily for the field
at a given poiwnt in terms of that at some preceding point on a ray connecting it to the
source. In corsideration of the fact that the enerZy fiux through every cross section
ot a tube of rays 1s constant, it develops that if the amplitude and phase of the field
at a point PO are AO, 560, then the field at the point P, a distance s further along

the ray can be written

L

2
u(P) = A_ Py Py (P +s) (3.63)
(pl+S)(p2+s)

where P Py are the principal radii of curvature of the wave front at Po.

(As noted above, if Po and P lie on opposite sides of a caustic, there is an add1-
tional factor of ¢ 2_.) If P lies on a reflected ray, the point of reflection is
taken as the reference point PO and it 1s assumed that the field there is proportion-
al to the incident field, the proportionality factor being the reflection coefficient,
which 1s determined by the surface characteristics at the point. (If the field u is

a vector field, then A is a vector and the reflection coefficient 15 a matrix.) At
any field point P, then, the incident and reflected fields will have the general form
(3.63), and the sum of these 1s referred to as the geometric field ug.

The determination »f the diffracted field 1s somewhat more difficult, The

reference pownt for a surface ray s the point of tangency of the incident ray which
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generates it, and here we assume that the field is proportional to the incident field,
i.e. since th. phase varies continuously the diffracted amplitude is written

AfP)=D(P)A(P ) (3.64)
d o o i o

with Ai the ncident amplitude and D the diffraction coefficient, which is yet to be
determined, Also, in accordance with the above assumptions, at each point on a
surface ray, energy is being radiated into space at a rate which is assumed pro-
portioral to the square of the ampiitude at the point times the elementary area, with
proportionalily factor a. This yields a differential equation in the amplitude as a

function of distance s along the surface ray, whose solution is found immediately to

deo
- ’ 0
Ad(sl) B Ad(o) do

Here do o 1s the width of an elementary strip containing the ray at the ia:tial point

be

S
]
em)L- g &(s)ds! . (3.65)
0

J

s =0 and do 1its width at S0 and the derivative notatwon signifies the limit of the
ratio as the quantities approach zero, The decay coefficient a{s) must also be de-
termined independently, The form (3. 65) can be combined with (3, €2) and (3. 64)
to give the field at any point on the surface ray in terms of that at a point Q on the

incident ray (see Fig. 2) and the result can be applied to the point Pl where a

tangential ray through the field point P leaves tae surface.

- -
(oY
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P S, Pl A difficulty arises .n applying
S, (3.63) to find the field at P
\ in terms of that of P_, since the
Q | '

\ latter 1s on a caustic ana one of
the radii of curvature of the wave
fronf, say Pos vanishes there.
This necessitates the assumption
that the amplitude AO becomes
infinite 1n such a way that the

product Aop2 is proportional to the ampiitude at P, cemputed from the pre-

1
vious formuias. The reciprocity principle dictates that the proportionality factor is
the same function of the phy sical parameters as the diffraction coefficient D

appearing in (3, 64)., The complete expression for the field at P 1 terms of that

at P 1s [inally written
¢

L_

do(PO) / P ~
= ) D . 3 3 . + &+
ud(P) A!(PO)L(PO)DU l) o (Pl) ! s,)(pl+52) exp {ﬂ(Lfb 1(PO) 5.8,

i
- S als) ds} . (3. 66)
1 .

A further modification must be 'made in (3. 66) {or surfaces on which the { ¢ld

is required to vanish,  In this case, since the surface 1s a4 caustic, there must exst
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a sort of boundary laye: in the neighborhood of the surface, in whicli the field is

much stronger than in the more distant regions, and which will in general consist of

a number of different modes, each with its own amplitude and diffraction and decay
B

[ =

coefficients, so that the product D(Po)D(Pl) exp [— S a{s) ds| will be replaced

o

tby a sum of such products, and the amplitudes appearing will be those at some point
sligntly separated from the surface.

Since the diffraction and Jecay coefficients depend primarily on the local
|geometry of the surface, their essential characteristics should be determinable from
the solutions of certain canonical problems, and the values so obtained should hold
for a reasonably large class of scatterers. The method used to determine these
coefficients in the canonical cases (the circular cylinder and the sphere are
sufficiently representative for most purposes) is to expand the exact (wave function)
solutions in asymptotic series for small wavelength and compare the dominant terins
of these expansions with the forms obtained by means of the above theory, a process
which is too leagthy to be treuted in detail here. In all cases examined so far the
ﬂessential forms of these terms are in perfect agreement, and it is a simple matter
Lo isolate the diffraction and decay coefficients. For bodies other than the cylinder
[end sphere, of course, the problem of determining the exact solution and its
posyraptotic form is by no means simple, and the latter objective foi tic prolate

spheroid will be discussed presently.

L 106
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Before we proceed to this, however, there are several considerations in the
geometric theory which require further comment., As remarked above, the ex-
pressions derived so far become infinite, in general, in the neighborhood of the
diffracting body. The modification required to permit their use there can be inferred
from: the behavior of the exact solutions of the cylinder and sphere problems, I ob-
taining the asymptotic forms of these for a general field point, the Debye expansion
8 used for the Hankel functions which appear. Fcr a point on or near the surface,
however, the arguments of these functions become approximately equal to the index
of the dominant one, and the Debye expansion is no longer suitable, but should be
replaced by the Hankel expansion, which is valid for this region and remains finite.
Since the diffraction coefficients to be used in the geometrical solutions to general
problems are proportional to these factors, it follows that to make these solutions
hold in the region of the surface, they should be multiplied by the ratio of the two
expansions specified. The corr:ction factor for an axial caustic can be handled in a
similar, but simpler, manner by writing the exac! expression for a general wave
function possessi g an axial caustic and comparing this with its asymptotic form,
which becomes nfinite on the axis. The corrected expression for the surface field
of the hard spheroid 1s given along with the genereal field expressions in the section
on results,

The above theory can, with comparative case, be adapted to vector problems.

Fui e geometsic Nield (i, e, tncident and reflected rays) the form s are identical to

107
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those for the scalar case except that the amplitudes are now vectors and the reflec-
tion coefficients matrices. For surface rays, esach field quantity is resolved into
components parallel to the normal and binormal, and these components are assumed
to propagate independently according to the same laws which govern a scolar field,
each having its own diffraction and decay coefficients. Those of the normal com-
ponent (which is also normar to the surface) are taken to be the same as for a

scalar field which satisfies a Ncumann boundary condition, and those of the binormal
(which 1s tangen: to the surface) are taken from the scalar Dirichlet case., For an
axially symmetric problem, 1.e. backscattering from a solid of revolutiyn with
incident direction along the axis, this yields a particularly simplc express: -t for the

scattered (vector) field 1n terms of the two scalar solutions, namely (for the electric

field)

w

e
n
2 [+~

(:s s \! o
4y - uy JE (3.67)

where u; and ui are the scattered scalar fields of the Dirichlet and Neumann
h
problems, respectively. {Cerapare this with the relation (3.61) fo. the total
scatter:ng coefficients}), The compiete rad.ation pattern for the vector <pheroid
hos, to the best of our knowlidge, not yet been worked out,
The details of the geometrical theory as it applies to homogeneous, non-
absorptive diciectric bodics are discussed t length in the report of Thomas {1962),

Here the situation 1s quite d tHereng, an that the difiracted ravs are no longer
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significant. and instead there are refracted and internally reflected rays to Le con-
swsered. Since the reflecting surfaces are no longer all convex the possibility of
multipie reflections exists and the geometry of the wave fronts becomes nruch more
compi.cated. For certain wave fonts one radius of curvature becomes infinite.
wich tne result that expressions of the forn. (3.63) are no longer applicable. and the
principles of physical optics and stationary phase must be employed instead. A
general discussion of these is given in Silver (1959). The number and variety of
rays which pass through auy given exterior point depend on the relative permittivity
of the body as well as its geonietry, and a general discussion of the problen. will
uot be attempted here. The backscattering echo area of a particular spheroid of
particular permittivity has been computed by Thomas and compared with experimen-
tal valuesq.F One 1mportant characteristic of this type of problen: is that there is no
longer a well defined resonance region, since there are no appreciable surface
waves, whouse interference eifects are responsible for the large- scale oscillations in
the return from conducting bodies when the wavelength is comparable to the bocy
dimension. As a result the optical approach discussed here gives good results over
a frequency range extend'ng down virtually to the Rayleigh region

In the preceding account of the geometrical theory for conducting or rigid
bodies. little emphasis has been placed on restrictions i1n the shape of the sca terer.

A more careful consideration however reveals at once that since the radii of

4
curvature of the surtace are antimately 11 volved 1n the development and must satisfy

Aun attempt to check the numerical results has not succeeded to date  and the in-
vestiz ition i <0l progress  The curve s tharetore onntted here  buo the exper-

nental resvlts are givenon po 2003
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certamn criteria in terms of \he wavelength, any resiriction placed on the latter 1m-
plies some limitation on the shape. In the case of a spheroid, this expresses itself
in terms of the eccentricity or axial ratio. Thus in the Keller solution described
above the use of diffraction and decay coefficients cbtained from the sphere problem,
where the radius must be large compared to the waveiength, will result i. significant
error unless the local radii of curvature ui the spheroid meet the same requirement
everywhere, 1.e. unless the eccentricity is sufficiently small. This is Lorne out by
the analytical results to be considered next. In contrast to the situation at low fre-
quencies, where the form of the scatterer is of minimal importance, neariy all of
the high-frequency approximations deicloped here actually invoive a comtined re-
striction on frequency and eccentricity.

Another such .nethod which e¢ntails a lower bound on the radius of curvature
at each point on the surface is that of Fock (1946). We limit ourselves here to a
brief description of this theory, since, as noted above, 1t yields results which are
in general equivalent (o those produced by the geometrical theory, and since the
particular forms for the spiervoid problem wave apparently not been worked out,
Furthermore the immediate answers provided are limited to the surface current or
freld distribution 1n the shadow region, from which it 1s no trivial tash to obtain the
scattering pattern or ¢ross section,

The basis of Fock's method 1s the local approximation of the surtface in the

region ol the shaoow boundary by a paraboloid (o1 in tae dimension, 4 paraboli
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cylinder,) If the incident field is a plane harmonic wave and the surface 1s a perfect
conductor (or either perfecily hard or perfectly soft in the scalar case) then the so-
lution 1s characterized in either vector or scalar problems by a scalar wave function
which satisfies a Dirichlet or Neumann boundary condition. Let the incident wave
propagate in the z direction and write the field quantity . which satisfies this
boundary condition and the scalar wave equaticn as

, -ikz
v =e C.

Then it 1s pnysically reasonable that in the vicun:ity of the shadow curve and for
small enough wavelength, the quantity U should vary much more rapidly in the
direction ncrmal to the surface than in any tangential direction. Application of
these two approximations leads to a parabolic equation 1n U, whose sclutions are
essentially Airy integrals, and the field 1s finally expressed in term of these func -
ticns,

As origmnaily formulated, the theory 1s essentially two dimensional and
applies only 1n the :mmediate vicinity ¢f the shadow boundary. However, it has
been modified and extended (of, Geodrich, 1959) to apply to three-dimeinsional con-
vex bodies and tc cover the entire shadow region. The modifications entail a factor
which accounts for the increase n energy density of the surface field due to the re-
duction 1n area as the rear of the hody 15 apnroached, i.e. the convergence of the
geodesice paths, and a continuous comp#r r=en of the rermai and tangertial old com-

ponents over the snadow regron,

»—
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3.1.2.3 Asymptotic Theories

The remainder of this section deals with an analytical approach which in-
volves the work cf a number of authors and which leans heavily on the asymptotic
theory of the solutions of differential equations involving a parameter, Ag.in a
complete account is impossible here, but we will give a general outline of the scheme
as a whole and the various contributions of the principal investigators, and pcresent
the available results for the spheroid problem in their proper context hereafter.

The general apprcach can be characterized as a refinement and extension of the
Watson transform methods wh.:h were developed or:ginally in connection with the
sphere problem and which have been described 1n detail in the first repcrt of this
series. The basis of the original technique was the observation that sinze the terms
in the Mie series are entire functions of the summation index i 1n a strip about the
real axis, the sum can be rewritten as & contour integral in the comples @ -plane,
whose integrand is the general term of the series with an additional factor to provide
poles at the proper points on this axis, such that the residues are the terms of the
original series, This integrand has a second set of poles, howcver, which are the
zeroes of a Hankel function appcaring in the denominator, and ali of vhich lie in the
first yuadrant of the v -plane. When the path of integration 1s deformed s as to ¢n-
close these poles instead of those on the real axis, the resulting residue series 1s
found to converge much more rapidly than the original one at igh frequencies,  One

modification of the procedure was g ven by Sommenrield (1944), who obtamed the
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analogous result in the scalar sphere probiem by subjecting each radial eigenfunction
1n the wave-function series to the given boundary condition, thus determining the
complex indices directly. A similar procedure was applied to the scalar spheroid
problem by Levy and Keller (1958), In this case the summation indices remain
integers but the eigenvalues )\mn(c) become complex, with distinct sets obtzining
1n the soft and hard cases., In both spherical and spheroidal geometries, the
representation thus derived has a logarithmic singularily which obtains everywhere
on one half of the polar axis. The asymptotic theory refer:ed to above 1s em-
ployed in the evaluation of the terms of the new series n the limit of small wave-
length. The first term of this asymptotic series 1s precisely the sotutior given by
the geometric theory in all cases for which the two have been compared, and it is
gencrally conceded that this will always be true,

The Watson transform method was exploited in the cylinder and sphere
problems by Deppermann and Franz (1952, 1954) and Franz (1954). In these articles
it was shown that the resulting asymptotic series for the field in the shaded region
of the surface could be written 1n 3 form such that each term might represent the
amplitude of a creeping wave launched at the shadow houndary and traversing the

surface. The series apparently diverges in the illuminated region, but tms

difticulty 1s resolved by splutting otf a series whose sum represents the geometrie
optics contribution, leaving 4 convergent series which 1s again interpretable in

terms ol creeping vaves, Furthormore 1t was tound that the analy tical solutions

thus developed were i good agrooment vith cortinn experimental fata,

[
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The genieral method has »een for'nalized by Kazarinoff and Ritt (1959) with
the aidofthe complex resolvent theory of Sims (1937)and Phillips (1 332). It 1s shown
that in any scalar problem in which the scatterer is a level surface in a coordinate
system in which the wave equation separates, the field distribution on the suriace
can be represented by a contour integral, which can then be evaluated 1n terms of its
residues, at least in the shadow region, by means of Langer's asy mptotic theory of
solutions of differential equations with turning points (sec Langer, 1935). If the
problem is axially symmetric, the integrand involves only the product of the radial
and angular resolvent Green's functions, each of which has 1ts own set of poles. In
the usual type of problem these two sets of poles are separated by the contour, which
can in general be closed in such a way as to include either set, at least for a certain
range of the angular coordmate of the observation pouint.  Inclusion of the poles of
the angular Green's function produces the Mie serics (or its non-spherical analog),
which converges very slowly at high frequencies.  On the other hard those of the
radial Green's function yield the rapidly convergent serics referred to above, This
is the series derived by Kazarinoff and Ritt for the case of 4 rigid, not-too-thin
prolate spheroid struck by a plane scalar wave 1n the axis of symmetry,  Under the
given restriction on cccentricity (&0 =1+ ¢ ¢ > 0), the asvmptotic theory ol
Langer is appl.cable and the residues are expressed in terms of Ay itegrals or
relatcd functions,  The results are valid over the entire shadow region o the sur-

face, md a sanande rcarrangement of the series permits an internre tation i tormes
F ) > 1
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of creeping waves and a comparison with the 1esults of the geometric theory of Levy
and Keller. The first two terms of the residue series are in agreement with this
theory, and the third term exhibits a depcndence on the radius of curvature at the
tip which indicates that the geometric theory 1s not accurate 1if this quantity is too
small, The details of the analysis are, needless to say, rather invoived, and only
the final results are presented in the present work,

If the spheroid is long and thin, i.e. ka>> 1 and kb%/a << 1, the initial
part of the above procedure is still valid, The field distribution on the surface can
still be expressed as a contour integral which is evaluated in terms of the residucs
at the poles of tne radial Green's function, The previous asymptotic developments,
however, are no longer applicable, and un alternative theory must be used in com-
puiing the residues. The solution has been worked cut for symmetrical point-
source eacitation and either standard boundary condition by Goodrich and Kazarinoff
(1963). The asymptotic theory employed was developed by McKelvey (1959) and
ivolves Whittaker (cr parabolic cylinder) functions 1n place of the Airy tunction of
the previous solution. This ultimately yields expressions for the surface distribu-
tion of the field or its normal der.vative in the form of Jdouble seriwes, with distinet
forms applying in the regions ol the shadow boundary and the shaded tip for each
boundary condition {sce See. 4.1, 8% Each term an any of these series can be
interpreted as aowave whose phase 1s associatea wath  a certinn geodesie path length

n the surtuce and whose amphtude depends ina somewnat complicated manner on
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the shape of the surface and the number of times the wave has passed through a tig,
The general character of thcse waves lies somewhere between that of the c:eeping
waves exhibited by the fat spheroid or sphere and that of the traveling waves which
are associated with long thin bodies. This appears reasonable enough since with the
specified eccentricity and wavelength the spheroid is indeed a long thin body, i.e€.
the curvature of the geodesic paths along the sides is relatively small and the tips
are correspondingly sharp. Accordingly the amplitude decay rate aiong the sides is
no longer an exponential but instead a slowly varying function of n, while 2t each tip
there is either a reflection or transmission through the pole, characterized by the
usual phase shift predicted by the geometric theory,and a sharp drop in amplitude
due to radiation. The specific form of the decay rate along the sides suggests that
the waves are propagating as spherical waves origin.ting at the tips rather than as
cylindrical sarface waves. In the transition region between the neighborhoods of
the shadow hrundary and the tip, the formulas become more complicated, and no
complete physical interpretation has been attempted.
3.2 ECCENTRICITY-RESTRICTED APPROXIMATIONS

We turn our attention next to certain approximate analytical resulis which
depend fundamentaliy on assumptions restricting the shape of the scatterer, 1,e.
the eccentricity of the spheroid. We may divide these solutions into two rather
distinet classes, In the first the cecentrienty restriction is apphied to the forms

obtamned via the exact (wave function) tormulation and the resulting stmplitication
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provides considerable insight into physical phenomens which in the ;.- ¢ ral usc are
both inherently more complex and masked by the c,acity of the representation. In
the second, the restriction on the shape of the body is used as a point of departure

and thus characterizes the whole solution implicitly., In either case the frequency

may not be completely arbitrary, since any of the basic techniques imposes at least !
some practical limitation, but in each of these solutions the permissible range of
frequencies is much wider than that of the eccentricities.

3.2.1 Lzarge Eccentricity

The primordial example of a sclution in the first class for a highly eccentriqg
spheroid is the previously cited work originated by Abrahi:m (1898) and extended and
refined by Page and Adams (1938), Ryder (1942) and Page (1944). The method used
has been described earlier (Section 2. 2) and we consider here only certain
qualitative icatures of the results. In addition to investigating the free oscillations
of the general prolate spheroid, these authors consider the case of a thin conducting
spheroid struck broadside by a wave with electric vector parallel to the major axis.
The incident field is assumed to be cither instantane~usly uniform or a sphervidal
tunction of the angular coordinate with arbitrary index, The plane wave is easily
expresse as a series of these functions, acwd the uniform field can be considered
as a degenerate form, i.e., function of index zero,

For the limiting case of the thin rod of length 2F, an incident wave consisting

of the nth "harmonic' alone produces a well define d resonance at a frequency such

-
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that c=kF =nx«/ 2, for which the induced current in the rod i< sinusoidal! and much
larger than at neighboring freqaencies. There are n+1 nodes, counting those at the
ends, and the current is exactly is phase witi: the incident field. As tne eccentricity
is decreased, i.e. the rod is transformed into an increasingly thick sphercid, the
resonance becomes less well defined. The frequency at which the current is
maximum decreases as the thickness is increased, and the current ierds the field
in phase by an incre=asing amount, The current at resonance is stiud sinusoidal,

but the rate at which it drops off as the frequency drparts from the value at
resonance becomes lower. For a spheroid of given (large} eccentricity at a fre~
quency below the resonant value, the current still has a sinusoidal character but it
leads tne field in phase by a substantial amount and the loops near the center of the
body are larger than those near the ends. As the frequency is increased above
resonance, the nodes move : vard the center and the current becomes vanishingly
small in an ever-increasing region about each end, and the current lags behind the
field by an increasing phase angle,

The situation is of coursc much more complicated when the incident field
consists of something other than a single harmonic, but the gencral case can he
analyzed by meuns of the techniques used in these articles and the phenomenologicas
elements uescribed should assist 1n the overall understanding of the problem. IEx-

pressions for the scattered fields under certain excitations are given in Sec, 4.1.9.
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t.nother “.pproximate result which is usefu! for thin spheroids of sufficient
length at careasy aspects is that afforded by trsveling wave theory., The derivation
of this is now stan lard text-book material (2, g. Kraus, 1950) and since it is not
characterized by thie precise fc~m of the body, we will not dwell on it here. The re-
sulting formula for the cross section as a function of aspect is given by Siegel (1959}
and recorded in the Table. It is difficult to {ell exactly how the accuracy of this re-
sult deterivrates as the length of the spheroid (in wavelengths) or its eccentricity is
decreased, but the clata given by Siegel (Fig. 26) show good agreement with experi-
mental vesults in the region where the contribution is largest, which is in general
som.e 18-30° off nose, for a spheroid of axis ratio 10:1 and length 4\, and it is
2lear from the nature of the derivation that the results should be even better for
longer and thinner bodies.

* 2.2 Small Eccentricity

At the osposite extreme in the shape parameter range for the prolate
spheroid, the body is of course very like a sphere, and the cbvious line of approach
to the determir ation of its s attering properties is via a shape perturbaiion : pplied
to the classical sphere zolution, In this manner an approximate sclution shouid he
obtainable,witiiovt the encumbrance of the spheroidal functions or even their natural
ceordinawes,which 18 restricted in frequency only in the sense that the Mie scries is,
and whose accuracy must improuve as the eccentricity become s smalier. This type

sl aniiy 818 has been carried cut by Mushiak: {1056) for the scautering of a plune
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electromagnetic wave by a conducting spkercid with arc rrary directions of incidence
and polarization, The corresponding forms for the scalar problem of . Tigi?
spheroid w itk symmetrical incidence are given in an un.ublished Radiation Labor-
atory Memo by Sl ator and Ullman (1958), The scalar solution for arbitrary in-
cidence should be easily derivable from the vector forms given by Mushiale, but
the explicit cxpressions have not been written cut.

In any case the first step is to write the expansions of the incident and
scattered fields in series of spherical (vector or scalar) wave functions. In the vec-
tur problem, the spherical vector wave functions of Hansen are employed, and the
scattered ficld expansion has the same general form as in the sphere problem,
thcugh the incident field expansion, since the direction of propagation can no longer
in full generality be restricted to the z-axis, is more complicated. We can, how-
ever, restrict the propagation vector to the xz-plane, so that its direction is
specified by a singlv anele a, and assuming the usual time dependence c—iwt, the
expansions of the inc dent and scaitered electric fields for the two fundamental
polarizations (gi perpendicular or parallel to the y uxis) take the general forms

(6.6] [0 6]
S i, s ,2‘ 1 1,2 o
= 0 dabs o il gl ((1,2) (3.68)

omn'-omn om'l"vmn
‘ m=0 n=4v

emnTTemn onm—omn

s

N
m=

. N )
{Abb v 2y phs (L2 ) (3.69)

n=
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Here the M and N .ectors are the standard spherical vector wave functions
described in the first report of this eries, the superscripts 1 and 2 pertaining to
the incident and scattered fields respectively. The coefficients Ai and Bi which de-~
fine the incident ficlds are found by the familiar . rocedure of expanding the vector
functions and utilizing the orthcyonzlity of the angular functions involved, Deter-
mination of the scattered field .;oefficients As, BS is somewhat harder, though the
scheme is fairly straigntforward. The general surface of revo!..ion symmetric
about the z-axis can be specified in spherical coordinates by giving the radius r as

a function of 8, and for a general spheroid the relation can be written

1
r=1(0)= a[1-v sin? @] ° (3, 70)
where, for convenicnce, we have defined the quantit+
v = (b% -a?)/1? (3.71)

with 2 and b as defined earlier. (it should be noted that for v <0 the spherocid is
" prolate, and for v > 0 it is oblate.) The expression (3. 70) must now be inserted
in the two equations which obtain on the conducting surface and which in thig case

h.ve the form

1 df
Al = = : G oo —— a .7 K
h¢ 0 EH a6 Er on r=f(8), {3.72)

i .
Er’ E(,’ Ffb being the components of the total electric fitld E=E + Eb, for either

pclarecation, which are obtiined by using the explicit torms of the vector wave
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functions in (3.68) and (3.69)., Neeuless to say, with the radial variable dependent
on the arTular cne, the orthogonality relations which simplify the solution in the
sphere problem are destroyed utterly, and it is no longer possible to obtain an ex-
plicit expression for each coefficient of the scattered field in terms of the corre-
sponding pair in the incident field expansion., The equations become manageable only
if all the radial functions are replaced by approximate expressions correct to the

first order in. , viz,
V .2 . . 14 . .. 9
r=a(l+>=sin® 9), j (kr)=zj (ka)+— ka j '(ka)sin“6, etc.
2 n n 2 n

and the validity of the subsequent forms is thus limited to cases where I v|2 <1,
which is the characteristic feature of the perturbation technique. The desired s’ -
lutions are finally obtained via a process of multiplying the boundary equations by
suitable angular functions, integrating over the interval 0 8 <7, and combining
the results in such a way as to yield expressions for each AS, Bs containing several
pairs of the Ai, Bi. The scattered fields are then given by (3.68) und (3,69) in the
iorm of rather complicated double summations. The sphere solution can ol course
be split off and the first orde' correction term due to the shape perturbation isolated,
Fortunately there is a considerable simplification inthe results forthe special direc-
tions of incidence and observation, Tre essential results are tavbulated hereafter,
and certain curves computed for particular cases are also reproduced (see Figs. 21,

22, 34). A complete discussion of the accuracy and applicability range has not been
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given, but a comparison with experimental data (Fig. 34) shows reasonably good
agreement for a sphero’d of axis ratio b/a = .8 over a wide angular range.

The scalar problen: is handled by means of the same general technique,
though the analysis is of course considerably simpler, especially as carried out in
the aforementioned memo under tae restriction of symmetrical incidence., Here the
incident field is simply

) i=e-ikr cos 6 =Z(-i)n(2n+ 1)jn(kr)Pn(cos 6} (3, 73)
n

and the scattered field has an expansion of the form

S _ (), .
p -; A b “(kr) P (cos 9). (3, 74)

If the total field is §= ¢1 + ﬂs, the boundary condition un the rigid surface specified

hy r=1(9) is

2 @.@_l?—g;;
il v (3.75)

When the field expansions (3. 73) and (3. 74) and the perturbatioa forms given above
are introduced in (3, 75), the angular depeindence can be incorporated entirely in the
arguments of three Legendre polynomials with diffcrent indices, and the ortho-
gonality relation ca. then be uned to {ind a finite and relatively simple expression
for the general coefficient An' Again the correctionterm is easily separated from
the sphere result, but as in the vector case the tormer s more difficult to compute

than the latter.

—
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It would presumably be possible in both the vector and scalar cases to in-
crease the accuracy of the solution, or extend the range of applicability wita given
accuracy, by retaining all terms in v 2 throughout the derivations., For the case of
general incidence however, and particularly in the vector problern, the amount of
labor involved would be formidable, and even in the simpler cases it would not be
small,

3.3 APPROXIMATIONS FOR WEAK SCATTERERS

There remains to be considered one class of approximate solutions whose de~
rivations are based on assumptions restricting the properties of the media involved.
Technically speaking, of course, the case of a perfect conductor iii a non-conducting
medium might fall into this class at least as a limiting form, bnt this case is at
once so distinctive and so important as to warrant the separate treatment given it.
The problem we now deal with lies at the other zxtreme in the material parameter
range, i.e., where the propagation constant in ihe interior of the scatterer differs
very iittle from that in the surrounding medium, and the phase shift suffered by the
incident wave is thus relatively small. Under these conditions thic scatterer is
termed weak and can be treaied 2ssentially as a perturbation of the medium.

The natu.-al representation of the scattered field in this type of problem is an
integral over the voluine of the scatterer which ic obtainable via Green's theorem
and whose integrand involves the Green's function and the internal field, This ¢x-

pression itself is rigorous but since the exact form of the internal ficld is not
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known in general, some approximation must be introduced, and this accordingly
characterizes the result. In the most elemsantary application of the method, the
internal field is taken to be exactly what the incident field would be in the absence of
the scatterer. This yields what is known as the Rayleigh-Gans-Born approximation,
which is of rather limited utility in the type of problem of interest here and which
we will not consider further, Instead we will deal with several refinements which
give considerably improved results over a wider range of the parameters.
3.3.1, Scalar Case

The first of these was developed by Montroll and Haxrt (1951) and applied to
the scalar problem of a homogeneous spheroid of material properties not too differ-
ent from the surrounding medium, struck by a plane wave at an arbitrary angle of
incidence., The integral expression for the scattered field is obtained by consider-
’ing the entire space as a medium of variable propagation function k(r). The scalar
wave equation is thus

Lv2+Kk(r)] y=0

i
where ¢ is the total field, equal to the sum ¢ + g//s of incident and scattered fields,
and if the spheroid occupies the volume V, the function k(r) is specified as

k{r) = ko at all points outside V

=kl at all points inside V.,
The boundary conditions to be satisfied are

a) continuity of ¢ and its first derivative at the boundary of the spheroid,
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b) Loundedness of these quantities at infinity.

Assuming unit amplitude, the incident wave can be written

i_ ik
wl =e o/}o

A . . . . . . i .
where ro is the unit vector in the incident direction. The wave equation can be

written

s
[vz s ] =02 -k (x))u
o o) =
and if we consider this as ar inhomogeneous eq .ation in the unknown function , the
solution can be expressed in integral form, using the free spacz Green's functicn
(2.13), as

ik jr - r|
ofF

iy = - 53___.__..__._ 2 _y2 )],
V) = -~ Lk K pic (e v,

|z-L
where the integration covers the entire space. The brachketed guantity 1n the
integrand, however, vaunishes uat all points exterior to the spheroid, so that the ex-
pression can actually be written
k2 _k2)
< 1 o

) = T

or at large distance r from the scatterer,

(3 76)

[
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There remairs the problem of ascertaining or appro: imating the field ¢ { r)interior
to the scatterer. Here Montroll and Hart mal.e the assumption that for a long thin
spheroid the intericr field should be approximately equal to that in an infinite
cylinder of diameter wyual to the mincr axis of the spheroid arnd material properties
the same. The intcrnal field of the cylinder can be determined rigorousiy under the
assumption of continuity of the normal particle velocity at the surface, which i.-
volves the ratio of the densities of .1e two media as ancther essentially independent
parameter. The solution has the torm of an infinite series of cylindrical functions,
however, and in view of the error already introduced by the assumption of the
cylindrical field for the spheroid problem, the use of the exact expression is harc’
warranted. Instead it is observed that if the coefficicnts in thz cylinder result are
altered in a manner which, in the case where the interior and exterior densities and
propagation constants are nearly equal, changes their values very little, the series
can be summed, and when the resulting exponentials are substituted in the integrand
of (3. 76) the integrations can be carried out in closed form.

The approximate expression thus obtained for the far-zone {ield scattered by
a thin, tenuous spheroid (See Sec. 4.1.12 p. 170) is not asymptotic to the exact so-
lution in any one parameter alone, since there are threc essentially independent
approximations involvcd, As the density and propaguation constant of the spheroid's

interior approach those of the surrounding medium, the approximate solution is

A
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asymptotic to the exact, at least in the sense thct for both the scattered field
approaches zero. The accuracy of the approximation should improve, in some range
at least, as either of the ratics approaches unity, or as the axial ratio a/b of the
spheroid becoines larger, but the details of these variations are not given. It shculd
be noted that the frequency is not expliciily involved in any of the approximating
assumptions, except as it appears in the definition of the prupagation constant, The
validity of the result should thus be relatively insensitive tu the frequency, though
some variation is almost certainly present.

Another awproximate scalar result for weak scatterers has been given by
Greenberg (1660). This is based on the Born ;series solution for the Schridinger
equation under the conditions that the range of the potential, i.e. dimension of the
scatterer, is large compared to the wavelength and the ¢nergy of the potential is
small compared to that of the wuciaent field. I, in addition, the scattering angle is
small, then the Born series 1+ easily summed and the scattered amplhitude is given
in terms of a triple mtegral involving the potential (see Schiff, 1856). For a square
well complex potential of spheruidal form the integrations nave Leen carvied out by
Greenberg to yield an expression for the total scattering cross section, wlich is
proportional to the imaginary part of the forward scattering amplitude.  The re sult

is listed in Sec, 4.1.12.

-
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2. Vector Case
Certain vector problen.s analogous to the scalar cnes considered above are
also capable of formulation in ter ms of an integral equation. If the two media are

assumed to have the same permeability and the dielect ic constants are € and Z,

for the interior and exterior respectively, and if a plane wave with propagation
. i . .
vector ko/i‘ and constant amplitude vector E = (perpendicular to /},) strikes the
) o

spheroid, the integral equation for the total electric field E(r) can be written

-iwt
(suppressing the usual time dependence e ' )
ik
(E'fo) el of ik /156_1_'_ :
E(r)= 4 VAVA |7 E(r) dv'+e © E. (2.77)
74'60 p
\7

where p = |£ - z" and the integration in the vaviable r' covers the interior of the
spheroid as before. The essential problem is again the choice or determination

of an approximation to the .nternal field C(r'). Two independent attacks on this
problem exist in the literature and wi! be outlined here. The first was carried out
by Shatilov {1960), His nas.c assumption is that the amplitude of the internal field
1s just that which would be produced by a uniform external field, while the phase is
that ! the mcudent field, The esplicit form of the amplitude is obtained from (3, 77)
by taking the fieldpomt 1 1inside V and letting ko = U, e, taking only the first

term in the expansions of the exponentiais, The amphitude 15 thus
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(e-¢ )} r . r
i 0 — 1 1 —]
=E + VA Y, = av’
gio"‘h’e/\/\g)p‘l
v
and the entire internal field is
1k/} ‘T
E =E e °° (3.79)
=i ~io

This assumption yields in effect a refinement of the Rayleigh-Gans-Born approx’-
mation in the domain of the material parameters, but it introduces at the same time
a serious restriction on the frecuency, so that the applicability of the resuits is
necessarily limited to the Rayleigh region. For the scattered field in the far zone,
the formula (3. 77) yields, 2fter some manipulation, the expression

epee) (M
J,ﬁ}/\(pl\gi)

vV

ES(r)= dv’ (3. 80)

4 €
o)

with §= (r- r')/p. By virtue of (3.79) and the far-field condition this can be

further simplified to the form

ik/I\‘ . T o A A
. kf)(e-eo) e 00 k (p-T ) r!
Exr) = ~—-‘;—Z—— gio——',-—;'r- e dv (3.81)

o

(note that 1n this approximation the propagation constant k inside tbe spheroid is
the same as l«:0 outside.) The integral can be evaluated explicitly for the

spherowdal scatterer with arbitrary directions of incidence and observation,
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If the geometry of the setup is as shown in Fig. 3, where the incident and observa-
tion directions are separated by an arbitrary angle B, and the symmetry 2xis of the
spheroid makes an angle o with the bisector of the complement of B, the plane of the

angle « being unrestricted, the field can be writien finally

—

“ A
” //<\
’
yﬁ
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(€-€ ) ik
0
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e °°% LV (3. 82)

1t
o
e
3]
)
11

2
o

©

where V is the volume of the spheroid § =£ =% af ) a?-b?
o

\ . =3,
Kq)=3q (sin q-qgcosq)

and

a
0 TN ,

= : fg’g - sin? o - sin B/ 2,
0

(Compare this expression for the scattered field with the form given by Siegel {1959),

p. 72 of this report, basers un the dipele approximation.)
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The second attack on the weak-tcattering prihlem is that of Tkeda {1962},
again based on the integral formulation (3. 77), but employing an «xpansion technique
which yields a more general result, Instead of the a priori assumption of the
interior field uced by Shatilov, Ikeda assumes an expansion of the electric field at
the general point r in powers of the (small) quantity (eo-e) /€, i.e. a power
series in terms of € about the value €, which is written

(%) n

€ ~-€
E(r) = (o) E (v), (3.83)
2, 5

Also the exterior propagation constant ko is written in terms of the interior value

k as

k = kie /e)]/?
0 0

and when these expressions ar~ substituted in (3. 77) and the coefficients of like
powers of the argument are equated, there results a set of equations which express
each vector _I;:n(y_) explicitly in terms of the preceding ones and the incident field
vector E_i, and the expansion (3. 83) can thus, in p "irciple ac least, be carried out to
any degree desired. Since this expruession is valid everywhere, it can be used for
the exterior field _Igi in (3, 80), and the scattered field is thus given explicitly as a
power series in 60.

This technique is used by Ikeda tu determ.ne the cross-polarization elements

of the vcattering matrix to the first-order approximation, The remaining elements
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a: 2 determuaed to the zero-order approximation. The latter result, in which the
cross-polar.zation elements of the matrix vanish, is comparable to the Rayleigh~
Gans-Born approximmation, offering a siight advantage in that here the true interior
propagation constant k appea s in the internal field expression instead of the ex-
terior value ko' It should be noted that there is no absolute or implicit restriction
on either eccentricity or frequency involved in this method, though from the nature
of the forms involved, some of which are tabulated in the next section, it is to be
expected that results of a given accuracy will be more easily obtained at lower fre-

quencies.
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RESULTS

The foregoing discussion of the analytical soluticns of the spheroid problem
has been kept reasonably free of detailed and specific formulas, on the theory that
the number and complexity of the pertinent férms would, if included, tend more to
obscure than to elucidate the reasoning involved. In the first part of the foliowing
are tabulated the principal end results of the various analyses, together with refer-
ences to the sources and pertinent sections of th» preceding text and any available in-
formaticn on accuracy, range of validity, etc. The second part is a compilation of
quantitative data including the majority of the curves or ,.oints, both theoretical and
experimental, obtained and rublished by the principai investigators of the problem to
date,
4,1 TABULATION OF FORMULAS

1. Exact Scalar Solations (see Sec. 2.2.1, pp 25-31, also Spence and
Granger, 1961),

The specialized forms of the fundamental scalar solutions for source point in

the axis of symmetry are as follows:

Eq. (2.23) becomes

Q
Z ;}-s (e 1S_(e, MR (e g)[‘” £ )-C_R g)]

le_
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£q. (2.24) becomes

c (§,mr)-ZZ—-—' s, (@0s_(en[Rien-c &Y (9]

on
I these are further specialized bv putting the observation point in the far zone, they

become respectively

~ e L.)_ (1) e w3 N
e rp=-r 2 S8 (e, (e, cos 0) B Ne,E )G R (0,6
ntl ]
® n i(kr- — 7)
ST ] 2
andGa)(r,G ;)= N Son(c,l)Son(c, cosGEOS(kr- 5 r)-Cone B

kr n=0 on
and in this case eq. (2.25) becomes

8¢

6 ;e S s (o cos 6) R £ )
o ’gl’ _rrnz Non on' <! oon' % €08 on ‘517

In these formulas the quantity Con is as given in (2,23), i.e.

ar e, £ B R e, 5 )
C = n 0 on 8]

on o (3) H_B___R(3) (£ )
on 0

with @, 3 as in (2,22).
In the case a =0, 3=1 (scattering of sound by a hard spheroid) a number of calcula-

tions of scattered far field have been carried out by Spence and Granger (1951)
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for plane wave incidence (Goo)' Their results appear in Figs. 4 - 8.* In addition
some nose-un back scattering cross sections have been computed by Siegel et al(lgsﬂ
and Crispin et al (1963). Their results appear in Fig. 9.

2, Axial Dipoie Solution (see Sec. 2.2.2, p.32, also Hatcher and Leitner,
1954),

The asymptotic form of eq. {2.41), which gives the far zone radiation pattern

with the dipole at the tip of the spheroid is

oo (l) S (c, cos 6)

(5.2 1) (3), o)
ﬁ_b] 1n 1n[a§<‘{_—l R\ (e §):|

¢(9)—

where, as in(2,41), p is the dipole strength and p In is the normalizing factor of the
radial functions, as defined in (2.14). Radistion patterns for a dipole on a spheroid
have been calculated by Hatcher and Leitner (1954). Their results appear in
Figures 10-12. Belkina (1957) has also calculated some radiation patterns of an
axially symmetric dipole located on the surface of a spheroid. Her results are pre-
sented in Figure 42,

3. General Vector Solution (See Sec. 2.3, p. 42, also Siegel et al, 1956),

The scattered electric field in the far zone produced by a conducting spheroid

struck by a plane wave propagating parallel to the maior axis is given by eq. (2.55)

*
Note that the scattering patterns as originally published omiited the units, i.e.
the ocdinatesplotted are actually values of the quantity (8, §)/ a,
__-ikr 4im s, s , , _ ,
where (6, p)=re . Y00 ¢,y scattered field) and a = semi-major axis,
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as a function of the angular coordinates n, § of the observation point. From this

the radar cross section is easily found to be

2
o
o(np)= = (sia® § E : i“a% s_(c,m|
|| ns0  °
2
= n X Z
2 . : . ~
+cos® § DZO i [A“.Tloon(c, n) 1A 1-1f Sln(c' TI]

]

and for backscattering this reduczs to

¢8) 12
4x l‘-‘——‘ n . x
U=Lil2,2“—"1As“l)
E n=0

The results cf a numerical computation of electromagnetic backscattering cross
section (Ziegel et al, 1956) are presented in Figure 24, Scction 4.3. Tae

2z
coefficients A::, An are found as indicated in the text by solving the linear equa-

tions (2,52), (2.53). If therr are truncated after the fourth term, as in the compu-
tations of Siegel et al {1956), the solutions may be written in determinantal form as

follows:

The Ai have the forms

BOO 0 DOl D03
i Bog Coq Doy DByg

Ax - akE
c G Uiotlia Vo Wit Wis
Ugglsn Vo Wi Wag
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and similar expressions cbtain for the A, Tke denominators G and H are given by

the expressions
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3 00 © Po1 Dos
§ 0 Ca9 Doy Dyq
w
: V1o V12 11 Y13
i .
% V30 Vag Wa1 Wa3
i r
i
! ¢n° P10 D1z
g © Cis Dao Do
H =
Voi Vo3 Wao Yo
Va1 Vos Y20 Woo
the elements B , C , - ---W in the above are defined in egs, (2.54). The
rnm m rn

integrals which appear there can be expressed directly in lterms of the sphercidal
coefficients (cf. Sec.2.1.2)as follows using the Kronecker delta, 6rn’ and the parity

modulus, urn’ which are defined respectively as

0 for r#n _{0 for r+n odd
rn * Hen ©

\! for r=n 1 for r+n even.
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%
o o
(3k% +5x+1) .ln = in or
4 =2 -+ I3 »
{2k+3) % _! 'lnju nk d dk
B y i
j=0 k=0

Accuracy of the 4-term resuit aegends inversely on ka and in @ more com-
pi.czated but not so critical manner on EO. Ai a vadue §0 =1,005(a/b = 10) the re-
suit is correct to tvo significant figures out to ka=<5,

4. Rz leigh Series

4. Scalar Case (See Sec. 3,1.1, 61, 2is> Senicr. 1960Ga).

The coefficients un(n) and vn{n) in the series (3.2) aud (2, 3) for the
far-field amplitude of a soft or hard spheroid struck by a piane scclar wave in the
axis of symmetry are given for n=0 - - - 3 in the foilowing tabie. Except where
otherwise specified, the argument of all Legendre functions appearing is §o. Primesh

denrote derivatives with respect io the argumert.

*
ngmmd?n=OMrk<&
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TABLE 1
n un(n) (Soft Spheroid) vn(n) (Hard Spheroid)
9 (Po-/ Q)P (n) 0
1 (r /@ )°P (m 0
O O 0
P P
1 o 10
= = = +
5 Qo PZ(TI) 3 3, Pl(rz)
2
P[P\zlp 2] 1 B 1 P
0 0 1 1 2
—N\= -3z +35 M 53 o P+ S ==P (n)
Q, (QO} 3,7 9] o 3Q 1" 9Q"
3 —K—-— P (mH—=|I|=2]-S—+=P(n) 0
o\Q /2 Q/|1\Q,/ 3¢, 3
. P P
— —_—— +
525 Q P4( ) 75 Ql P3(n)
PP (/P P Y1 P! P! P
945 q, QOIQO 3Q_ 63/ |2 5Qp s e\ e, Q)
P P. Q. P B P' /P Q'
1°1]1 {73 ®3Y 1 70,4 1173 3
4 o= === o —+—1P (1) tool o -4 P+
3 1[zs P, Q /) 6q 25/ 75Q1<P1 ] 1
2 i ) 1 t 1
_[____{@_3__*} [____,_{ > 9 F) m}l,m,
) =y 17 1 1 1 9 t
Q|59, Q,|\Q,/ 27Q, 6Q, 675 3[175Q "27Q!|Q)2Q." 7 [ o
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TABLE I{Cont.)

n un(n) (Soft Spheroid) vn(n) (Hard Spheroid)
2
i P02 1"902(1)0221)1 23.-‘1 1 P'lz 1 (P
5 — jPp(mpd—ifl—=j———=P. M| —\—] Pm+={= )P ()
a T\Q! 1\@'
525\Q_/ "4 Q,/\e,/ 3Q, 63 2 27\Q 178 \Q! / To
2 2

L Q 0 0
4 2
_(f’g\ 5B\ |
Qo, 9“\QO/ 2025

The backscattering cross section of a hard spheroid of axis ratio 10: 1 com-
puted from this series is plotted as a function of ka in Fig. 14. The dependence of
the accuracy on the axis ratio has not been thoroughly analyzed.

b. Vector Case (See Sec. 3.1.1, p. 64, also Justice, 1936)

The incident and scattered fields about the spheroid are assumed to
be representable as power series of the forms shown in (3. 15). In the solution for
the conducting spheroid in terms of vector niode functions, the incident field is
assumed to propagate parallel to the z-axis with ciectric vector in the y direction,
The first three coefficients in the incident field expansions are then (in rectangular

coordinates)
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—0 X -1 x -2 X
. 2
1 i i Z
H =1 s H = i = — 3
S Ty HiT iy BEoi
and those of the scatiered electric field are
1
P
2
Bt
Q i
1 1
1 s 1P @ 10 {(z) (2)
FEL TR IS o TT iR
"R, 12 7q L 711 09,
pl P r
5 s_ 2 "3 .(2 2) .. (2) 3 .(2)
B T 1 8, +54 vR -8y, 58
"~ Q 13 Q. %12 ot €11
3 2
11 1 5 1
6,1 .Q_Q_L.I.)_Z__l%‘l LQO(?'E “1)-28 (P, Q) g2
7% 12 1 1" 5 1° 1 1 1 =e
P Q Q P Q 5Q, 1
1 [ 1 1
P 1+
P N 1 %P
1 =~ - 1 1
0 Ql € €40 “io 75 3Gp Ql
1 B 1 %2
B ]
3 g2 - 1) - >
QO(2ao ) GEO 7 Il
* I +5 I
PL Q2 B Ql
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Here, as in (a) shove, the snrgument of all Legendre functions is EO and the primes

indicate differentiation, Tl previously vandefined vector functions appearing
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are given by the expressions
2 2 (2 (2)
@ =op® AL =g
=o 0 e e
mn mn mn mn

1(2) —=-v¢(ez) AY

e mn y
mn
g(z)-’_‘:_x_'_¢(2) -2 1 vp(z) +64% ¢(2
11 11 1 X €
= bt 2
\Y /1\ ¢( ) -x V¢( )
00 XxX'e e
00 00

2
where the functions ¢i ) are spheroidal harmonics of the forms givea in (3.22),
mn

written specifically
cos

..M m
¢e =P (n)Qn (S)Smmsb.

mn
0

Corresponding coefficients for the scattered magnetic field are expressible in
similar fashion. For explicii forms, see Justice (1956), (Note however an incon-
sistency in definitions of the coefficients _F:i 97 }ji 9 appearing there, viz, the
series are written in one place in powers of (ik) aad in another in powers of (ike),

¢ being the semi-focal length.)

The coefficients in the near-field series obtained via the potential function

method are also given in the above reference., These arr extremely complicated

145




= THE UNIVERSITY OF MICHIGAN -
3648-6-T

and voluminous, however, and we list instead the rexults for the far field, which are
sasily obtained from Steveuson's formulas for the general ellipsoid by specializing to
the case of a prolate spheroid {(cf. Stevenscn 1953, a,b ).

Assume a spheroid of major axis 2a, minor axis 2b, dielectric constant and
permesahility € and p, respectively, immersed in a vaccum with major axis in the
z axis and struck by a plane wave with harmonic time degendence e“iwt, wavelength
A, and propagation, electric, and magnetic vectors specified respeciively by the
three sets of direction cosines £, m, n; ,{'1, ml, nl; 12, m2, nz. Without loss of

generality we can set m =0. Then the (spherical polar) components of the scattered

far fields are given by the expressions

dP 1 opP\e
= = — —
g H¢ (ae sin § ap) R
E = ~H = l -@-E --a-:]-';— elkFt.
) 6 \sin® 0 86/ R

where, to order k4,

4
=x? + '+ + Lot + +
P (K1 @ KZ’B K3 v) + k [: 2 L, B Lg v
+ 2+ M, B + + +
M, @ + M fP+ Mo + N, By+ N, ya+N aB

l - o
s + + 2.2 .12 02 4.2 z-}
50 (Kla K2B KS'y)(a o’ +b% B +c y )_J

and P is obtained from this by making the svbstitutions
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- oA A

(1 m,n)~>(/ ,n)

(!2: m2: nz)%_(,,;: ml) nl)

E<>,
Here a, B, 1, are direction cosines of the field point (R, 8, §) and the quantities

X, L, M, N are defined as follows;

M

==(e-1){ (e),(

(V]

-~ (€ -1)f (s)m

[P lM

K3=

Lo

le-
fe-1) f3(€)n1

15 Lli“fl(e) {(6 - 1)[1[:;_1-(%2 - a%) - (b2 L2 +2a? nzi‘ -C aznmz}

+ erl(eﬂ 2,(1{(5 -1 )(35'2)1 +eh? Ib‘ ] Ez,u (d? +h2 }

2
+f(e)gl\,u)nm (Ib )[ b2 +£—-—-—- ]+ eu(——-sz-)}

&

2 2 _1.2
+[fl( eﬂ gl(u)(lb '13)11[(6 -l)kl(u) - epleu-2) (¢ abzb )]

— 1 ’
15 L2==f2(€) {(e-l)ml[g (5b% -a%)-(a%n?+ L242 \:J +¢la’ n,('2—hz.fn2)}

+ lz(eﬂ m, (e—l)[(e~2)l+cb = et % )}+
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4+ { P-"-’{_ - { + 2 az —
- f2(€)g2 ) {(Ia- lb) B (a® +p? )\n,(’2 lnz)-n,ﬂlaz -In2b] —epul g

15 L3 =i (e,{(e )n l—'“(.ja -b?){a? 2-b212)_] €h? sz}

Ml—- I‘SQ [(e IXT 1,{ )+m(2b2,(,( ~a%nn )]
Mza%‘g (e-1)(1, A4 +1, nn, M(a mn, +b744)) |
M3§%%36-~1)(Iab/11~2Ibbnnl)+ m(za nn, 24/, )J
15 N = é‘(u - lVfl(u)(az -b3)12+ nmlgl(e{g(a%bz) - a2]
-, g, laf, Eu(%’;?fﬂ 7 -1)k1(e):]
15 N, = "(u D w)a? -b?)m, g ,)[ (a%+b%)nd tAn )-an l—bz,{’nJ

15 N =~Eg3(€)/t’ml(€~l)b2
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b2 .
3 )(n/z-xnz) }

12 s 2 _b2
+EZ(€L gz(u)(la - ‘)ml EG—I)kz(u)‘-‘ epfep -2)(2‘—382—2]

*[fs(eﬂz (e~ 1)[( -2)[+ ea? -g—%]+ €y % }

i a2 _b2
+ 1 g, (am, | en (3 )-(u-l)kz(e):J

* Note that in

second term.

perfectly conducting ellipsoid (Stevenson, 1953b, Sec. 6(3). p. 1148) contains a nu-
mevrical error consisting of the omission of a factor of 2 in the denominafor of the

Sec. 6(5), p. 1150.

Stevenson's article the expression for Nl specialized to the case of a

The same error is carried over in the corresponding expression in
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where

at2 ]

-1
f3(w) Uw -1) 1 Tal;)z :]

g, () = g () = [_(w ~1){a?+b?) I

_2_]
ab?

g3(w) =E;-1 )« 212 I, *

withw = p, €, and

= e () = (1-Eyn2
kl(G)— k?(u) (1 2)(b I

a+ Ya2? - p?
a- Va2 - b2
2

I_-—- ')
1= oty
a _ 2(a% - b2’

Also

I==—= log
a -b?

a_
_ el
Ib"_2(a2 - b?)

222 + 4b% - 3ab? I

1 =

UNIVERSITY OF MICHIGAN

-1
2_]*

2
ab ab2

-1

-a?] )-,5-(:112 I -b21),
a 2 a

b

146

ab 2ab?(a? - b?)?
” 4
I—"’4 —l()ab'+3bI
y 2 22
bb 8 b4(a -h)
and finally
__ , 4 e(e~1) 2 + 2% 4 €
Q=(e-12 1, (21 +1 ) ~—5— WU+ Foa3 )+ =
ab "bb ab ab b*(2a° +b°) a“bG(Qa b9
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_ 1 T g . 4 4
with J=— 3[_4a‘*-1sa‘b2 -165 + 15 ab’l]
8ab {a% - b?)
v=__._._‘.1__.__ 3' 2 2 2
and J'= 5 3 43 +26ab-3b“(4a° +h°)1}.
. 3b” (a2 -b?) -

The convergence prcperties of the power series representation for the scalar
case are discussed at length by Senior (1961) (see Fig. 13), but the conclusions
reached there do not necessarily hold for vector probleins. Results computed from
the first term of the power ser:es for various polarizations and incident directions
have been obtained at ihe Radiation Laboratory (Sleator, 1959) and appear in Figure

16 . Some idea of the accuracy of the two-ierm approximation in certain particu-
lar cases can be cbtained from Figure 17.

The expansion of the scaitered electric field of 4 conducting spheroid, with

plane wave incident nose-on, considered by Senior for thc low frequency region is

given in eq. (3.37). which express the field in terms of

The coefficients An’ Br\

the ve _tor wave functions M N

o are expanded in powers of ¢=KF in the
In,

eln

forms

n r =0
n+2 "‘0'3'1
c 1
B = -1 j("x(‘) B
n b -
n r =90
150 4
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1 1
=y =\
op+y (B-5 % (0+3)

——
—

where b s 1)

js3

Explicit expressions for the coefficients Ar s B? have been worked out for general

n and for r =9, 1 in the case of A? ardr=0, 1,2 for BI;.

Thesz values are sufficient to give the first two non-vanishing terms in the power
series expansion of the s~attered field., Considerable excess information is con-
tained in these forms, in that the index n can take on any value, but without a
‘arger range of r, no more terms in the field expansion are completely known, The
available expressions are given in the following tz;b}es. As in the previous table,

all L.gendre functions have argument §0.

I. Expressions for the AI;

r n even n odd
1. 00
0 1] - i
LDn 2 61,1_1_] 1
Q)
{ P!
112i 1 } 2
1 -{=D += —=
in Dn 6 62,n;Q‘2 0
o earnmen 1Py
¥ n  (20+3)n? at! Ql
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. n

Ii. Expressions for ths Br

T n even n odd

0 )] 0

P
1 {2i 1 2
1 -=1= D --6, = 0
9{: D 602,n}Q2
Pl
+ g_i_D _(2n:‘—l)(n+2)D “1
r n {(2n+3)n® “n+l Q}

2 0 1 [ 3 1 ]Ps,
=i D -6, FT= & -— +
225L ™ n 2 1,n 6 3,n QB

pl
1 3 8i (2n+1)}(n+2) 2
+—=<D +7§ ==t -+
36 /' n 2 1,n7 (2n+ 3)n n+1}Q'2
31 8n2 + 14n + 9 27
- + -
+{(100 2(2n-1)2(2n+3)2)Dn 10691, n
P
._gl_ (2n- l)(n+2)D 1
r  {2n+3)n° n+l Ql
_L [D “i 1
5{n 2 Ln (Ql)2
Here 6 18 the Kronecker delta and
m, n
n-i, ntl,
. (2n+1) 3 7! 2 7" n-1
a ° " n(n+l) (n+ 1) !
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5. Variatioaa! Forms (See Sec. 3.1i.1 p. 85, also Sleator, 1230)
The voriational coefiicients C‘w B defined in egs. (3.47), (3.48) are

writlen more explcitly as follows: Foru v p+v even,

z

, rE, koA €,k v
c =-ae 5t g 2 -1PfR3 L 0 - singdy
nv o "o L2 2! a/2
3 (so"COS )

where

P & D el Q)2 2 oau{1)
i u(c,o,ﬂ,u)ap LoosyPu_l(cosu) EOP‘x (cos ¢) hﬂ (p)‘r\gc cos u)Pﬂ(cosq}?l+l(p)

; o= Y1 nci ¢_2 il +g 2, )3
a,(E K ¢)= ~|cost B (cosy) € P (cosy)| j (p)+(E>cosY)P, (cost)i ., (p)

v+l
kF £,/€2 -1
and p= © 12 ‘g‘o being the coordinate of the scattering surface.
(g2 o - cos?y)

For v < u, the subscriff, »n M and A should be interchanged, and for -~ v odd
the integral vanishes, Further,

dj_(ka)

v
k e
dika)

= 2 22 1y

By 47 F- Go 1)i
The stationary value J o of the variatioaal quantity J defined in eq. {3.43) can be
written

3= 47r(2 A, Bu)

u

where the quantitier Au are the solution of the linear system (3. 46). These have

been computed for a particular spheroid ia/b = 10) at a particular frequency
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(ka = 1,40) for the range u = 0 - 4 inclusive. The values are shown in the following

table:

u Re A Im A
u u
. _ -1 -3
0 6.52536°10 -5,44415.1C
1 -1.69158- 167 1.15989
-1 -4
2 -5,82017.10 9.7678810
-4 -1
3 1.31725-10 -1,70612-10
- -5
4 3,52111°10 2 -2. 0056410

The resulting potential distritution over the surface of the hard spheroid siruck by a

plane wave nose-on is plotted in Figs. 1-18. Tke normalized backscattering cross
a® -2

sectiono =4 — ‘ Jo! computed for this case has a value 1,105, as compared to

4
b

the value 1,091 given by the ordinary wave-function series, {see Fig. 9).

6. Geometric and Physical Optics (See Sec. 3.1.2.1 p. 89)

The geometric cptics cross section of a spheroid with transmitter on the
axis of symmetry and receiver separated from this axis by an angle B <ris
given in eq. (3.49) and plotted in Fig. 19. By the theorem quoted in this con'ext,
the monostatic cross section is thus also given for values of the polar angle 6 =p/2,

The physical optics integral is given in (3,53) but cannot be evaluated exactly

except in certain special cases. Some numerical evaluations of cruss section have
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section at those ang._s whers exact evaluation of ihe physical optics integral is

possible (see p. 95} is given in Fig. 20.

is given in eq. (3.58) as

2/3

6522+2b (=5) , kb?/a>> 1.

o 'kb?
The values of the coefficient bo are:
Hard spheroid {(Neumann boundary condition): bN= - . 8640
Soft spheroid (Dirichklet boundary condition): bD = ,9962,

For t.roadside incidence, the total scattering coefficient can be written

-2/3.

o= 2+2bo(kb) C

where bU 15 48 given above and the correction factor C depends on the axis
ratio as iilustrated by tle following table of values:
bfa= 1, € .8 .6 .4 .2
C = 1 . 874 . 781 .673 .6508
For the electromagnetic problem with nose-on incidence, the total cross

section is given by eq. (3.62), viz.

23
X2+t + v
op 323yt b))

{55

beer carried out {Siegel et al, 1955a) and are shown in Fig. 19. The bistatic cross

The total scalar scattering coefficient {(cf, Jores.1957) of a prolate spheroid

with plane wave incident nose-on, as obtained via the physical optics approximations,
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with bD and b N as above, For proadside incidence there are two distinct resuiis

- on~ for paralle! polarization (E_IH a) and the other for perpendicular (_E_:1 | a). These

can be written

o -2/3
T R e R N |

where the correction factors C| !, c _l_ are given for various axis ratios as follows:

bfa= 1.0 .9 .8 .6 .4 .2
Cy = 1 2.1 3.09 5.08 6.68 8.11
C = 1 -0,21 -1. 41 -3. 66 -5, 47 -6, 93
7. Modified Geometrical Theory. (See Sec. 3.1.2.2 p. 10u, also Levy and
Keller, 1959),

The scalar diffracted field at the point P(€, n) produced by « soft prolate

spheroid §’0 with point source on the axis of symmetry at the point Q{& 1 1) is given

by the expression

. 7
lm ]
7 e P [t
ufP)= - > T
51,.2 !
2212 33O 51 e iy -maxg o)

Z _ f (n )-if (rz,j)
B, uq

—3 dn "r

( /1
] - 2
.L+exp121k [5 "
\1

Lfn
...4
\\\_./

1[(52 N1 -1), ;_
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Here n 9 - d n3 a.e coordinates of the points oi tangency Pz, P’1 of rays through

P, (See Fig. 4 ). The functicn fn is defined as

1/4
« exp{ ikF

52 _,72
£ (n)= 5 — :
L I n-Sonj)“+ (@ -1)(1 -n?)+ J(ﬁg -1)1 —nj?))

,j(szl-n(si—si) F\1/2
: + (&n-go n)’ +<!(sz—1)(1 -F )+ (€ 1)1 nJJ/

)

.
J 9/3
(o) S

0
3 Ql(é’o, n 0)

-nz)(l -n?)

where j =2, 3 and the

ambiguous signs are

X
_\, Q(gl’ H fixed as follows:
/
/ Sifj=Z orEni €30
\ - 0

3 (1)
Alt) = 3 cos(z -tz) dz,i.e. A(qil )) =0 for all n, and in the expression above for

~ K
G’ . Y
27 7f) Q?}go’ + if J =3 and.g n+§o< 0.
FIG. 4
N -1/3 in/3 (1 {(Hn th
Also 'rfl )=6 / eM'/ qfx ) where q; isthen  zero of the Airy function
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i
(P) A'(q( ) is the derivative of this fiinction evaluated at q_f1 ). The

corresponding result for the hard sphercid is obtained from the above by replacing
ir/3 (2)
e

-2 2+-1
., (@ [ (1), @ (237 (2) _ 9

(2)
q

ke

is defined by the relation A'(qflz)) =0 for all n.
On the surface of the spheroid, -vhich is a caustic of the diffracted rays,
these expressiors must be modified (see p.107). The corrected expression tor the

field on the surface of the hard spheroid, specialized for plane ware incidence, is

1/4 L exp G (0, n)-i expE3 {n, -1+G (-1, z}
uy(P) = ifa ° - (2) \n
[_(82 -n2)1-n _] n=1 (L+exp 2Gn(-l, l))qh A\qn";
where

G (¢, BY=-i kF Q
n

B
- (€2 _ % /1 r2~:_ 2/3
[ ! (2)(50',["*—0 1) S dn
N1-92 y

J R\ kr a/(Eg-nz)(l-nzl'

At a point on the ax:s at large distance z from the scatterer in the direc-
tion of the source (i.e. backscattering direction) the leading term of the series for
the geometrical (reflected) field is

ik(z -214)

2
u =+b =
g - 2 az

where a and b are, .as usual, the major aad minor sermi-axes and the positive

sign holds fcr the hard spheroid, negative sign for the soft. The leading term of
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the total backscattered field u Sug+uy is finally

1/3 5/3 il
.t_)_z_eik(z—Za) +1- 26w lkm)y g T e 3
2az - (2) (2 1/3 2/3 |

a2 4% )67 Yz 23

where the signs are as before, the guantity ¢ is defined as

1 for the hard spheroid

) ,2, (2
s={ % A flq)

2 for the soft,
o[oa”]

and (\1 |
— £ -1f

I = 331+4ka 27( Va3 (e y’g—hl)?‘/ 3 dn ~2%F \ [—2— dn
ofi’0 o o o
0 (E‘;- X1 - r?) 1-17

with j =1(2) for the soft (hard) case, and 7(1 ) as cdefined above. Numerical values of
the corctanis are given by Levy and Keller as

q\ll) = 3,372134 q(f) = 1. 469354

A'{qgl)) = -1, 059053 A(q(lz)) = 1. 16680

Accuracy of this approximati n has not been determined in general. 1t has

been shown {cf. Kazarinoff and Ritt,1959) that it is applicable only when the wave-

length is small relative to the radius of curvature at the tip of the spheroid,
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8. Asymptotic Solutions (see Sec. 3.1.2.3, p. 112)

a. Fat spheroid (cf, Kazarinoff and Ritt, 1959 a)

The scalar field in the shadrw region on the surface of a hard syheroid struck

by a plane wave nose-on is given by the series

W ,n) = ZR
0 T r

R i i a1 ‘}
e + e in the vicinity of the shadow
A v L bounda
l14+e T Ty
]
where R_ =< iy Lf4
B [e 5 | in the vicinity of the tip.
\ rl l1+e T
Here
/ ~1
. 2 . (2) 2 AENEL
Ar- 5 l{hrH}_ (hr)Bl n°)1-€ nﬂ
3
Y2
— ifam-2] Ty [v e -B]
B = 2T 4 ol r <

r 13 3/2 (2 . 1/a
b tjhrﬂl (hr)Enn")(l-eznzﬂ

3

d(n) = b [8(-) - s(0)]
ax(n) = b | S(-ny + S(0)

1
{’_ g 2
Siny= -1 gr t
V dt
n

Jgi'l 1-t°
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THE U

L = -4b S(0) =circumference of generating ellipse

A fio]”

« = complex propagation const, =¥ -is
[—' —~——
1 2

1 i
e ‘l+ YE) g N
(€ 1)2/q (_) (J oy

wlto

i[5 ) 3h
=£ + —_— 1+
gr 5;-’0 € 2§0/, 2y ) ) 4/5

h =rth zaro of'—-lrl/3 (2) (;}

5 .
2b =minor axis and € =eccentricity =

&,

In the limit of zero eccentricit,, the result for the field near the tip is

L
f—- l[zsind(—n)-g']zgl §2 -1{sin L (-1}~ )J
r€—>0 §h H( )(h N1-n?) /4005[: f€2—1<m (~n)~ 19]

3

These results have significant accuracy only on condition that
¢ b%/a>> 1, {cf. Kazarinoff and Ritt,1959 b).
b, Thn spheroid {cf. Goodrich and Kazarinoff, 1963)

2

b
For u thir spheroid (k RO =k—; <2 1) at high frequencies {ka >> 1) with

point source on the axis of symmetry at the point (r;l 1) the surface fields in the
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shadow region are given approximately by the fcllowing expressions:
Near the tip, where| c(l+ r))l << iz
For the Dirichlet problem

N ®© lE(gl*.l)a cos [c(l-!-n)J

Bu(§ .U) R e
o N Y] 1 n. R
82 L P TR e P

nz0 m=0

For the Neumann problem

N (8 ¢) n ~ic(g, +1)
a(€ ,n)~ S ' S il e cos [e(l+n) ] X(2)
o 2n+l/2 n 5 /‘2 m
ey e 2 l:l - NE] 1:]

Near the shadow boundary, where | {1+n) | >> L

For the Dirichlet problem

~1C(€ +1)

dulg ) Z ZZ( 1) ! NG
b2 [1 2 y2 1 m
- ~n2)(g: 1)]
n+1/2 nt P n+1R2
[l ™ i (e
C

For the Neumann oroblem
N n+l -ic(& +l)

(-1)
E E (2)
w€ , M= .
0 C ) 4= l:(l n? )(g? ‘1)] 1/2 m

(e T e oot (Lo ;5”/J
e l-n/ 1+

4n2+l
9 n

)

L=
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where ¢ =kF

-1
[ et ] _ich?
Rl'E"g 2] * BT oZ

l.
x )
m

() "R, j=L2

-4i -2m{2n+1 2
41m[_4ic] m(2n+l), , 4m jm

m

These results should hoid when — = 10" (n=2,3,...) and 10 <ka< 102n-1.

U‘

9. Uniform Field Result, Thin Spheroid (see Sec, 2.2.1, p. 117, also
Page and Adams,1938).
For a thin conducting spheroid in a time-harmonic, instantaneously uniform

electric field parallel to the major axis and given by the expression

in 2 medium of pern:ittivity €, permeability u, the components of the scattered

field at the point (§,n) in the far zone can be written approximately as

2b104
, EELPs (W73 “(”’J HoE -wt+5 - )
g~ 2. 00 1 = 3 - 5
n 3 [ 2 4 3 2 21/2
'_P°2__ - +
Ve (9 £e"a)) (blml):]
r‘ Zb c4
5EAPS e I PR S
Hu_g_e %0577 ° ] ety T
p =3 1/2 ©
J lc a )2+(b m )2—]
d
in which
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g +1
i- :]
Fa) g _1

9bm

Ica

'ytan

c =kF

and the remaining quantities are written as power series in ¢ which begia as

follows
1, 187 4 _ 26,021 6
a =1- ¢ + c - -
L 9. 3.5t 2 phigtigbl A
ooyole o 2609 4. 32, 50 6. ___
1 2 3 2 4 4 5 2
2°5 2 57«7 2 ¢35« 7

5 7 3¢5 7

= PY(E) - —5 P (&) ¢4 52 P3(§)+"'2—%—§ Ps‘gﬁ *

E ge5° 3 Ls%s 3°.5% 7
31 1 1 1 1 6
-[—-5'9—'2——'P3(§)+ 7 2 ,“'—PS(E)+ 2 5 P7(§;:}C + -
3¢5 7 o111 3*5 13 375+ 7 «11+13

1 6 2 4 4
u, =P (§)+[ P (&3 P (52' c —[-—-—p (E)-""““—""""P ()
3737 5% g 33,7 st 17 g% 7013 0

o]
2% 7. 119013 0 ]
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Accuracy of these ferms has not been established. They shouid apply reasonably
well for the case of an incident plane wave with electric vector paraliel to the major
axis provided the wavelength is large compared to the minor axis.
10. Traveling Wave Formula (see Sec. 3.2.1 p. 119, also Siegel, 1959)
The backscattering cross section of a long, thin, conducting body struck by
a plene electromagnetic wave with propagation vector P making an angle 6 with the

major axis, and electric vector in the plane of P and the axis can be written

4
22 )]
o= ';ayl_f(e)
where f(6)=—'§i"rﬁ' n‘r (1 -pcos@)
€ 1 -p cosB S R

and

5 CmE—(lﬂ):] Cm[—(l p)—’
Q=T

+""""'{(p 1)cosl:——(1+p) |+(p+l)cosl-—(1 p]+<p —1)—— 31'—(1+ ’
2p
TkL '|>
- -1 - N
Sl[p( P’ }

Here Si is the sine integral
Cin is the modified cosine integral

Y = voltage reflection coefficient

¢

This formula is in error mn Siegel (1959) and Crispin et al (1959).

165




r—— THE UNIVERSITY OF MICHIGAN

3648-6-T

p =relative phase velccity

L =length of body

A =wavelength .
The relativ-- phase velocity p is determined by the actual path length along the sur-
face relative to the distance in the axial direction. The voltage reflection coefficient
depends largelv on the angle 6 and on the shape of the body at the tips and must be
determined by analogy or experiment. The values used by Siegel for the 10: 1 pro-
late spheroid in three distinct ranges of 6 are as follows

6 = 0-40° 40-60° 60-75"

v =.33 o7 1.0
The theory breaks down at § =0 aud in the region about 7/2. Comparison with
experiment is illustrated for the 10:1 spheroid in Fig. 26, p. 293.
11, Ferturbation of Sphere Solution (see Sec. 3.2.2, p. 119)
a. Vector Case (ci, Mushiake 1956}
The normalized backscattering cross section of a fat spheroid specified in

spherical peiar coordinates by the expression

.Y "l 2 . 9 ¢
r=a(l -ysin® 9) / thhv=l—a‘/b"‘,|vl<< 1
and struck by « plane wave whose propagation direction makes an angle o with the
. . L 1 ,
axis o1 yymmetry cun be written for 6 polarization (E ” plane of incident direction

. Jo :
and axis) and § polarization (E 1 said plane), resvectively, as
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1"12 : nG

a(a)- o ,(a)
|F, 20— <0

N
wN
Ay

where, to first order in v,

9 ¢—' (l) (2n.1)an(ka)on(ka)+1 nB,ﬁ

=1

with

ka ( (ka) (1)
o (ka) Sy Jn (ka}- [ (ka_}
1 D (1a)
i
B 1
Z [l_(a h (ka)_]

6 (ka)=
n

@

® ©
m m
- ;“_'I AL 0 mPn (cosi) irr*a Ilmmpr (u,osa)-
anc é‘/—"l n sin o r nr sin
m=0n=m r=m
m ©
2 o dP (cosa)
TR i I Yk I,
n do I nr
r=m
m, m
d :
mPr (cos o) . m Am Pn (cosa)
————+ BT "+ 4 L ) |-
sin @ rnor r nr da

The corresponding expression for n¢, is obtained from this by making the sub-

stitutions
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m P (cos o) d P;n (cos @)
. <> ——————, s=n, T,
sin o da

and the quantities Br" 'yr are defined by the expressions

[B ; (ka)] qr rka ; (ka] [kahii)(kaﬂ '.’ '}
ka .J [aut%kéﬂ _ ka _J j

ka j (ka)] "
'Y(ka)fm' j_(ka) [ L= (nl)(ka)\}-

Zka 'r Em@%mﬂ' )

B (ka) =
T

mlgg"

o sm . e
The remaining quantities Inr , $=1,2,4, are ecsentially definite integrals of

products of Legendre {unctions defined as follows:
P m m m _m
4P dP ]
P mnrj -—P-r—)— —E +m2 -:-Pn pr st'.n3 6 db

. d6 dé sin® 6

L m m
dp’ 4P m\

= P mnr -';i—é-n——Pr + d@r pn)Sinz 6 do
0\

T m
dP
4 Y
i n =Pmnr S L Pm sin 26 sin@ dé
nr de r
0
with
r’ {(2n+1)n=~m)! 2r+1, v ~-m)!
mnr = {2-6§

oom n{n+1){n+m) r{r+1)}r+m)!
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where 6 is the K1 mrcker Gelia,

0,

Results cormnputed {from these formulas for various values of v in the

neighborhood cf unity are shown in Figz. 21,22 . A comparison with experimental

data for a particular sphercid at a particular wavelength is shown n Fig. 34.

b. Scalar case, Net. .nann problem with symmetric incidence and arbitrary

chservation direction { {, Sleator and Ullo.an ibe8j.

If the spheroid is specified as in the vector case above and the scattered

. S . : N .
tield §~ (r, &) is expanded in spherical scalar wave functions

®©
¢S(r g} = —' A h(!"}(kr)P (cos @)
' ;l—_—,‘\ nn n
¥

then the coefficints A can he writien

r i a)]

A = \211*'1
n LLh(l)(k )l n

(2n+1) [(ka\)2 (n? +n-i)-nﬂn+lﬁ]

¥

i

with au = - .
(2n+ 1)(ka)3 [h(l) (kzﬁ! !—;fll) (ka);] (22-1)}2n+3)

l-n

+n’n-l)l:(ka)2 -(n- ’1(n+li] (n+l)(n+‘>)[(ka 2) - n(n+’3_21j

-
2 Exfllg(i{a‘)] (2n-1) B(ll“ (ka) } (20+3)

The backscattering cross section is given by the expression
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_ 2
i W
- g . .
g = k2 Z- : i An
n=0 :

No results have been computed from these formulas as yet, Accuracy should
be comparable to the vector case.

12, Weak Scatterers (see Sec. 3.3, p. 124)

a, Scalar Case

The differential scattering cross section of a thin homogeneous spheroid of

interior propagatiion constant k. immersed in a medium of propagation constant k
prop “

1

and struck by a plane wave propagating in the plane § =0 at incident angle o

with the major axis {:r 0) is writtcn approximately (sce Montroll and Hart, 1951) as |

2
2 2
271'(1(l -k )m ap’ _3 R |
a(6,9)= 5 04 > me i ) 2 J (u-ife v 2 J;(v)
(1+m) [:1+7$ +2F° cos 4ak1] 21 2
where
k. -k
1 o
/17K
1 o
* [z _ 2 2
kl Jkl ko cos® «
[kz - k% cos? a
. 1 0
m k sin o
0
w = al kt2+az kf) sin® ¢+k20 b? (cos @ -cos §)? -2a® kao sin § cos 6
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k sinf cos 8,

v = 82'5\',
o

= 3
- gt

2
+ a? }rc‘:')sin2 £5+k20b2 (cos @ -cos P)* + 2a%k

No quantitative data are available on accuracy of this result. Qualitative
remarks are made in the preceding text.

An approximate result which derives from the Schrodinger equation, under
the assumptions tnat a) the energy of the rotential is small compared to that of the
incident wave, and b) its range is small compared to the wavelength, is given by
Greenberg (1960). If a plane scalar wave strikes a square-well potential of prolate
spheroidal form, represented by the expression

U= —Uo(l +i¢) inside

U =0 outside

&t an angle a with respect to the axis of symmetry, the total scattering cross sec-
tior. is given approximately by the formula

1, ib g
=41b {22 sj 2 o4 he Y] . - (i +
o= AT (a sin® a+ b* cos® a) * Re > Yo exp(iC b)

+(€2— )2 E -exp (iC %):]}

where a, b are major, minor semi-axes,

1/2

2
C=ab azsin20 +b cosza:l

Ub

and u =—‘—{°——(l+i6;,




THE UNIVERSITY CF MICHIGAN
364:--6-T

[ hv]

ie. E(r)=E (r)=e” *E

/N
where €, Eo are respectively the interior and exterior dielectric constants, i is
the unit vector in the incident direction, and E ! is the incideut field amplitude, the

eas . oD AL
quentities Jl >|| and J”__>_Lvamsh, as does J“__>” if 1_1_@, where s is the

unit vector in the observation direction. To this order, the other quantities are

1 1802 y2yn2 2Cl(K))2
J = J' . = = (kv b a) (m "1) —_
A R G

where ko is the external propagation constant
r = distance to observation point from scatterer

a,b are semi-axes of spheroid

e ol e a2 2 2 11/2
K = I kl-koé (b¢ sin® Y+a“ cos® )
Y = angle between k’i\-kc? and major axis
j. is a spherical Bessel function
i

k is the internal propagation constant,
In the first order approximation, where two terms of the above series are used for
the internal field, the quantities which auish in the zero-order are given by the

form
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1 2,2 v 12 A2 L w2
- = < - < b R ¢
Ja—-}b (kor)‘ m{(m” -1) (ho a) (Xa—>b 1a—->b)
Z Z j (k sh jn+l(ki')
with Xa-—a»b = (2m+3¥2n+3) T
m=0 n=0
|
L Ca L (kf')n (ktr T ag T1 (cos @ )Tl(cos 8.)
4x z (kt')" ,u 3 T m s n i
-1 0

where p m.n is the parity modulus defined on p. 139.

s

= I b3+(a-b) s, 2|

it 'bH-(a -b)i %}

2 = unit vector in direction of axis of spheroid
i, S s tZ = components of vectors /i\, 8, 1 to parallei to z
ra

= unit vector” T

T =vcctor of integration point (dummy variable)

B -1
i = cos t
2

tt =|bt+ (a-b) t, ’%I

rivl form2 n

= and conversely for u<
B> " n+l orm>m y H

7 ;n {cos GS) is a Gegenbauer function
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Oi S = angle between £ and?‘, 2
A (8NY)

t,= % = = unit vector .Lobservation plane
L1 oa%)e

A __BABAY)
I 1-(1-9)2

- AAGAL)

‘ ' = o unit vector in observation plane _[_A
I 71-(is)

unit vector in observation plane| $§

and finally
1 27 o
i) (K
1 1 s 11 A A
7 = e— . d . . .
Y b o cltZ ( ¢T S ranl t ?)(t\ sb)
J K Ki
-1 0 s
where

5" =b8+(a-h) SZQ

t = b'?+(a-b) tz'?!-

Comments on range of validity appear in the text.
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4,2 THECRETICAL CURVES
The following are the graphical representations of the principal numerical

results obtained to date from the analyses described in the preceding chanters.
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FROM AN AXJAL DIPOLE AT THE TIP OF A

Tatcher and Leitner, 1954),
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FIG.11; RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE TIP
OF A PROLATE SPHEROle, ka=2, 0 (Hatcher and Leitner, 1954)
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FIG. 12; RELATIVE POWER RADIATED FROM AN AXIAL DIPOLE AT THE T1P
OF A PROLATE SPHERO];D, ka=3,0 (Hatcher and Leitner, 1954),
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a &, a_ a_ a
c_z;d‘ l p=25 ‘ 510 I(D £=5.07 l p=2 @B‘-lﬁ
£=1000801 {£=1005037 £=102 £=1J54700 | £=134.641
ka=kb=C | ka=kb=0 | ka=kb=0 | ka=kb=0 | ka=kb=0
c=0 '
ka=0.98 | ka=0,99 ka=1,00 ka=1.13 ka=],31
kb=0,04 kb=0,1C kb=0,20 kb=0,57 kb=0,88
=
c=1 /‘ \
/ka=3.00 ka=346
c=3
1 kb=qi2 =173
ka=500 ka=5717,
c=5 (y
] ¥p=q20) | Skb=289
Ska=701 ka=808
~,
o= \)
//
kb=028 xb=404 kb=626

FIG. 13: RADIATION PATTERN FOR AN AXIAL DIPOLE AT THE TIP OF
A PROLATE SPHEROID. {Belkina, 1757) {Broken lines correspond
to sphere of radius r = ¢/k.)
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{(a) Exact Solution (Siegel et al, 1956)

(b) Power Series, 1 Term {Rayleigh, 1838)

{(c) Power Series, 2 Terms (Stevenson, 1953)

(d) Power Series, 3 Terms (corrected, see footnote, p.60)

100
{b)
10
{
(d)
¥ /A/\@‘
% (
T
%.o0. RC)
0.1
0.01
0.001
0.1 0.2 0.4 0.6 0.8 0.1 1,2 1.4

ka

FIG. 14: LOW FREQUENCY NOSE-ON BACK SCATTERED CROSS
SECTION FROM A HARD 10;1 PROLATE SPHEROID (Sleator, 1960)
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FIG. 15: RADIUS OF CONVERGENCE OF RAYLEIGH SERIES (Sendor, 1961).
w and { are the dimensions perpendicular and parallel to the direction of
the incident field.
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FIG. 16: RAYLEIGH SCATTERING OF A PLANE WAVE BY A 10:]1 SPHEROID: COEFFICIENT OF (ka)4 IN
SCATTERING CROSS SECTION FOR THREE ORTHOGONAL PLANES (Sleator, 1959).

INote: Fig. 16 is continued on next page,)
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RAYLEIGH SCATTERING (continued),

FIG, 1G:
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FIG. 18; POTENTIAL DISTRIBUTION ON THE SURFACE OF A HARD

10:1 PROLATE SPHEROID WITH PLANE WAVE INCIDENT
NOSE-ON. ¢ = ¢~'K% + #5 (Sieator, 1960).
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FIG. 19;: PHYSICAL OPTICE CROSS SECTION OF A PROLATE SPHEROID
AS A FUNCTION OF SEPARATION ANGLE B. (Siegel et al, 1955a)
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FIG. 20; BISTATIC CROSS SECTION OF A PROILATE SFHEROID,
EXACT PHYSICAL OPTICS RESULT FOR a/b=10, ka=25,

(Siegel et 1, 1955a)
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FIG. 21: NOSE-ON BACK SCATTERING CROSS SECTION OF SPHEROIDS
WITH SMALL ECCENTRICITY
(Mashiake, 1956).
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= angie between axis of symmetry and direction of incidence

B = angle between plane of @ and incident I_B_i

,I;:_i = l.-:i (fxcosacosB +'fys£nB -'izsmacosB)
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¥IG. 22; BACK SCATTERED CROSS SECTION OF SPREROIDS AS A FUNCTION
OF ANGLE OF INCIDENCE AND POLARIZATION FOR ka = 1

{Mushiake, 1956)
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+ RELATTVE BISTATIC CROSS SECTION CF A DIELECTRIC SPHEROID IN PLANE OF
SYMMETRY AXIS AND INCIDENT DIRECTION,
afb = 3, 1{q) as in Eq. (3.82) (Shatilov, 1960},
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4,3 EXPERIMENTAL RESULTS

In view of the fact that the prolate spheroid has been the object of a considerable
amount of theoretical investigation, it is rather surprising to find that spheroids
are not nearly so popu:ar as objects of experimental study. This, in part, is s re-
sult of the difficully incumbent upon measurements involving low cross section
chapes, in which category the prolate spheroid often falls. It would seem, however,
in view of the considerable interest in the scattering properties of spheroids and the
increz2sed measurement capabilities of various laboratories, that a comprehensive
program of experimental measurements would be well justified at this point if one
has not already been begun,

At the present writing, the list of experimental studies on the prolate spheroid
is short and the available data are quite lim..ed. As an illustration of the scarcity
of these data, Fig. 24 depicts all available back scattering data for that case
where data are most plentiful, i.€., nose-on back scattering from 1 conducting pro-
1ate spheroid with major to minor axis vatio of 10; 1, Also included in the figure are
availahle theoretical results. This assessi.ent of experimental work is based on a
study of the published literature as well as private ccrnmunications which are
enumerated below, Any omissions are inadvertent an. it would ke greatly appreci-
aind if such data were communicated to the Radiation Laboratory, All of the work

discussed in this section concerns the electromagnetic (vector) case.
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OF A 10:1 PROLATE SFHEROID
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Back scattering measurements of a 10:1 perfectly conducting prolate
spheroid were carried out at The University of California, Berkeley, using the image
plare technique (Honda, et al, 1959). The operating frequency was 9346 Mc and for
ka=29,8, complete polar diagrams of the back scattered field viere obtained in the
plane perpendicular to the incident electric field. The results for back scattered
cross section near broadside zre plotted in Fig. 25 . Also included is the theoreti~
cal geometric optics cross section calculated from equation (3.49). At nosc-on
incidence the cross section was measured as about 4 tirues (6 db) larger than that
predicted by gesm~tric optics (se: Fig.24 ). There was some doubt as to the
reliability of the measurements for aspects near nose-on because the extremely
small values of the scattered field admitted the possibility tnat the measured return
was dominated by a spurious signal,

Subsequently an improved version of the same experimental setup was em-
ployed to measure the back scattering cross section of a set of five differer.t con-
ducting prclate spheroids, all having a ratio of major to minor axis of 10: 1 (Olte and
Silver, 1959), Their results for broadside (E perpendicular to axis of symmetry)
and nose-on incidence ar: given in the following table. The nose-on values are plot-
ted in Fig. 24 and substantiate the results of Honda et al.

¢ INdb RELATIVE TO 6 IN, DIA. SPHERE

a 6.0 3.0 2.111 1.263  1.184
Nose-on -26,0 -48.0 -43.3 -40.6 -40.9
Broadside 2.4 -0.5 -4,3 =~12.7 -13.5
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Further corroboration of the nose-on back scattering cross section of a 10:1
prolate spheroid for ka = 29.8 is given by measurements made at the Radiation Lab-
oratory (Hiatt et al, 1960). The experiment was designed to measure the effect on
back and forward scattering of coating various parts of a conducting spheroid with
radar absorbing material. A perfectly conducting spheroid was also measured and
the back scattering cross section appears ia Fig. 24.

J. Lotsof of the Cornell Aeronautical Labora‘ory also measured the back scatA
tering cross section of a 10:1 perfectly conducting prolate spheroid for variois as-
pect angles. These data have not been published directly though thev have appeared
in the literature (Crispin et al, 1959; Siegel, 1959)',’- cited as a private communication.
The datu were measured at ka = 12,56 for both horizental and vertical polarization,
The results for herizontal polarization Q’:I_i paraliel to the plane of rotation) are given
in Fig. 76 together with the theoretical result predicted by travelling wave theory
(see 3ec. 4.1.10). The results for vertical polarization (Qi per;wcndicular to the
plane of rotation) are given in Fig, 27. The nose-on values 1a both cases have been
renormalized and plotted in Fig, 24.

Some bistatic measurements were carried out on a 2:1 conducting prolate
spheroid for incidence along the axis of symmetry by Rabinowitz (1956). Measure-
ments were made at bistatic angles between 90° and 180° for both horizontal aad ver-

. C i
tical polarizaticns (E parallel and perpeadicular to the plase of rotation) at a wave-

length such that ka = 103. Quantitative results were not given but tre qual “utive

scattered field behavior is evident in the results given in Fig. 28,

Prtecnrrsmin, wevasmn o —. v ———

+
Note that the ordinate ccales in the graphs of these data in these references are too
high ' ra faclor of 104, Actually what is plotted is ¢ in cm2, not m?Z.
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FIG 27: BACK SCATTERING CROSS SECTION OF A 10:1 SPHEROID AS A
FUNCTION OF ANGLE FROM SYMMETRY AXIS
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More extensive bistatic measurements were subsequently carried out at the
Oniv State University experimental facility (Eberle and St, Clair, 1960). For
vistatic angles of O0 (back scattering), 300, bOO, 900, 1200,and 1400, scattering
eross section was measured continuously as a function of aspect for both horizontal
and vertical polarization of transmitter and receiver. As indicated in Fig, 29 , the
experimental set-up involved fixing transmitter and re.eiver at a particular angular

geparation P, aad rotating the target in a plane containing the transmitter

R

e

/—\‘/i}? eceiver

Al P
IR
U
Trapsmilier /f(\_ \
~

oD

FIG, 29

and receiver directions and the spheroid axis of symmetry. The system operated at
a wavelength of 3,2 cm and the spheroid {(again perfectly conducting) had an axis
ratio of 2,178 with ka =9,13, In Fig. 30, the measured values of o / »* in db are
plotted against aspect angle a. No attempt has been made to renormalize the data
since as originally presented, thc scale is too small to ne read with much accuracy.
The experim nial facility at Ohio State University was alto used to measure the
nose-on back scattering cross section of a dielectric spheroid (Thomas, 1962). For

spheroids of axis ratio 1.35:1 and relative permittivity 1.8 (index of refraction 1. 34)
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BISTATIC CROSS SECTION OF PROLATE SPHEROID (Eberle and St, Clair, 1960).

°
.

FIG. 30

-2.178 (Target aspect angle « and bistatic angle § depicted in Fig, 29).
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the cross section was measured for various values of ka. A theoretical curve based
on a modified geometric optics analysis was presrnied along with these results, hut
there appear to be discrepancies in the numerical work which have not been resolved
at the date of this writing. The curve is therefore o.nitted here, but the experi-
mental results are given approximately (as read from the published graph) in the
following table, waere b is the semi-minoraxis of the sphercid and the ratio ¢ / mh?

is given in decibels,

b/ .38 .40 .42 .16 .8l .85 .92 2, 02

"6. 7 -5. 2 -2. 7 ""2. .: "2. 3 e 04 —20 l 'Oc 7

o [ #b®

More extensive measurements of scattering by dielectric spheroids have been
carried out at Rensselaer Polytechnic Institute (Greenberg et al, 1961; 1963a, b).
Measurements of scattering efficiency., Q =o T/ A, A =geometric cross sectional
area (see van de Hulst, 1957; Gooarich et al, 1961) were made on a spheroid of axis
ratio 2; 1 for a number of indices of refraction, n=m -i§, both real {6 =0) and com~-
plex (6 # 0). Differential scattering cross sections were measured but not re-
ported, and the total cross section was determined by measuring the forward
scattered field, Measurements were made for incidence nose-on and broadside, the
latter for both vertical and horizontal polarization. The results are given in Figs.
31-33.

A series of back scattering measurements on spheroids of small eccentricity

was undertaken at the Ohio State University in support of the theoretical work of
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Mushiake (1956). Caly preliminascy results were given, and these arc shown in

Fig, 34 . There was some question regarding the reliability of these results since
the experiment was not readily reprcducible, The refinement of the experiment was
to be the subject of future work; however, at the present writing, refined results

are still unavailable,
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broadside incidence §1 par:illel to axis of symmetry

10 T. -~ = biygadside incidence, I;Ii parallel to axis of symmetry
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FIG 31: TOTAL CROSS SECTION OF A DIELECTRIC SPHERCID
n=1 603, a/b =2 (Greenherg et al, 1961)
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FIG 32; TOTAL CROSS SECTION OF A DIELECTRIC SPHEROID
n=126 a/b- 2 (Greenberg et al. 1963b)
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~ - == broadside incidence g‘ parallel to axis of symmetry

= ~=== = broadside incidence, }_{’ parallel to axis of symmetry
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FIG 33: TOTAL CROSS SECTION OF A COMPLEX DIELECTRIC SPHEROQID
n=(m-1¢) = 1 33- 051 (Creenberg et xl, 1963b)
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FIG 34: A COMPARISON BETWEEN COMPUTED AND MEASURED BACK SCATTERING
CROSS SECTION OF A SPHERCID (¢ = 0 is nose-on) (Mushiake, 1956)
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APPENDIX
INDEX TO NUMERICAL TABLES

The following is a guide to the principal numerical tables which have been
computed in connection with the spheroid problem. Note that the termirology and
normalizations used in the various sources are not uniform. To reconcile the dif-
ferent systems of notation, see the precise definitions in each source and the Table
of Notations in Flammer (1957). The notation a(A)b in the third column below indi-
cates that a quantity ranges from a to b inclusive at intervals of A. Accuracy is

specified in significant Sgures,

Quantity Source Parameters, Arguments, Indices Accuracy
Eigenvalue ! Stratton et al m=01)8 n=m(1)8 7
A () (1956)
mn
Flarmer a) m=01)3; n=m(1)3; c=%®.2)5.0 6-7
27T) b) m=1; n=5(2)19; c¢=1,2, x/2,2.0,
3n/4, 2.5, 2.8, 3.0, 7, 3.2 10
Weeks m=1; n=1(1)27 - 8 depending on ¢, see 9-10
(1959) below)

c=x/2 7 3xf/4 2x 12 47 57 16
max.n = 28 39 48 44 45 80 52

U. of MRad. m=0,1; n=01)3; 15
I.ah, c=,0935, .1043, .156, .234, .260, .312,
unpublished . 375, .521, .750, .780, .937, 1,251, 1,560,

1,876, 2,085, 2.493, 3.120, 3.75, 4.69,
5.86, 6.24, 10.43

Spheroidal Stratton et al m=0K1)8; n=m{1)8; ¢=0(,1)1,%.2)8.0 7
Coefficients (1956)
mn

dk (c)

Flammer a) m=01)3; n=m(1)3; c=01.2)5,0
(1957) k = -21n(2) vanishing point

A\
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f’% Appendix

g Index to Numerical Tables (cont.)

3,% Quantity Source Parameters, Arguments, Indices Accuracy

g Spheroidal Flammer b) m=1; n=5(2)13; c=1.2,7/2, 2.0, 3r/4, > 8

4 Coefficients (1957) 2.5, 2.8, 3.0, =, 3.2

! d;? %) k = -2(2)vznishing point

$ {cont.)

. U. of M. Rad.|a) m =0, 1; n=0(1)3; c=all values specified 15
Lab. ahove for cigenvalues; k =all necessary

unpublished values between -16 and +16,

by m=0; n=01)8; c==,994, 1.391, 1,591,1.939] g
2,086, 2,185, 2,238, 2.782, 2,981, 2,998,
3.581, 3.681, 3.780, 3. 80, 3.88, 4.00, 4,28,

4,60
Angular Flarimer m= 0(1)3°1 n=m(1)3; ¢=.5.5)5.0 >4
Functions (1957) 8 = cos™ n=0°5°)90°
L (e,n)
mn
Spence m =01)3; n=m(1}3-m) 4
(1951) a) c=1(1)5; 6 = cos~! n=0%(52)90°
b)c=,5(.5)5.0;, 6 =00, 300, 600, 90°
) Weeks m=1; n=1(1)20; c=#/2, 5, 8, 12
{1959) 6 = cos™! n=50(59)900 »>9
Radial Flammer a)j=1; m=01)3; n=m(1)3; c¢=.5(.5)5.0 4
Fanctions (1957) £=1; 005, 1.020, 1,044, 1,077
R(j) (e £) b)j=1,2; m=1; n=1(2)13 >6
mn ¢=1,2 - 3,2 (9 values listed above)
and deriv- £=1,01, 1,000L, 1.000001, 1.0000000L
atives with c)ji=2; m=0(1)3; n=m(1)3; c=1(1)5 4
respect to § €=1,005, 1,020, 1,044, 1.077
U.of M. Rad,jy j=1, 2; m=0,1; n=01)3, £=1,005 15
Lab,
unpublished
Mathur and ji=l, 2, 4, m=0,1; n=0, 1, 2
Mueller c=.1, .2, .4, .6, .8 £€=1.1, 1.2, 1.3 5
(1955) !
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Appendix

Index to Nomerical Tables {cont.)
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Quantity Source Parameters, Arguments, indices Accuracy
Radial Weeks j=1,2; m=1 n=1(1)12-22 (seebelow) 3-9
Functions (1959) £=1,077, 1,100
R (e ) c=5 8 12
mn max.n =12 16 22
(cont,)
Normaliza- | Flammer m=01)3; n=m(1)3; ¢=.5(.5)5.0 4
tion constant | (1857)
N {c)
mn
Mathur and m=0,n=0,1,2; ¢=,1, .2, .4, .6, .8 5
Mueller
(1955)
Joining Flammer a)j=1; m=0(1)3; n=0Q1)3; c=1(1)5 4
Factor (1957) b)j=1; m=1; n=1(2)13; ¢=1,2-3.2
(9 values listed above) 8
k(J)n(c) c)j=2; m=1; n=1(2)7; ¢=1.2-3.2
m (9 values listed above) 6
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TABLE OF NOTATION

In a work of this sort, in which a iarge number of symbols are employed,

some duplication is irevitable,

Many of the quantities howsver are adventitious and

are defined at the point of introduction and soon abandoned. Those in widespread or

repeatea use are listed below, along with brief definitions and references to their

points of appearance in the text.

Symbol

Alq)

a

b

» B
mn  mn

Name of Quantity

Airy function
Semi-major axis of spheroid
Semi~minor axis of spheroid

Field expansion coefficients
1/2 xWave number x interfocal distance = kF

Spheroidal coefficient

Incident, scattered electric {ields

Components of electric field in spheroidal
coordinates

1/2 x interfocal distance

Free-space Green's function

Green's function of particular body with point

source
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Defined
Cn_Page

157

27

13

18

48

49

21

29
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I

HE’ Hn,Hp

h.,,h,h
H(L2)

K(, n)
kg;z)a(d

Le Me _ Ne
oM, = mn, = mn
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TABLE OF NOTATION(CONT, )

Name of Quaniity

Fundamental solution with piane wave
excitaticn

Incident, scattered magnetic fields

Components of magnetic field in spheroidal
coordinates

Metric coefficients of spheroidal coordinates

Spherical Hankel function of 1st, 2nd kind

Fernel functicn in integral representation

Proportionality factor of radial and angular
fuactions

Harsen's vector wave functions

Direction cosines of vector identified by
index

Normalization constant for angular functions

Index of refraction

Associated Legendre function of order m,
degree n, first kind

Poynting vector

Dipole strength

Associated Legendre {unction, 2nd kind
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Defined
On Page

30

48
49
10
22

21

22

47

146

20

208

18

189

38

18
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TABLE OF NOTATION (CONT. )
Defined
Symbol Name of Quantity On Page
{1,2) . . : s "
Zero of Airy function or its derivative 157
Rg’n(c. £) Kadial spheroidsal function 21
R Distance between two points in space 38
I, r Radius vector, magnitude of same 27
Smn(c, n) Angular spheroidal function, first kind 18
s Distance along ray 103
1
Tn (cos 8) Gegenbauer function of order 1 174
t Time variable 27
u(P) Scalar field strength at point P 103
\Y Volume of spheroid 68
X, Vs 2 Cartesian coordinates 9
zg)(kr) General spherical Bessel function 22
o' Incident Angle 120
B Separation angle between transmitter 90
and receiver
AL, 2) Wronskian determinant 22
2
v Laplacian operator 13
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TABLE OF NOTATION (CONT.}

Nams of Quantity

" Gradient operator '

Kronecker delta

Permittivity

Eccentricity of spheroid =

Uy |-

Neumann number

Angular spheroidal coordinate

Angle between vector R and dipole axis
Spherical or spheroidai polar angle
Wavelength

EBigenvalue of spheroidal equation

Permeability of medium

Parity modulus

Perturbation quantity
Radial spheroidal zoordinate
Coordinate of scattering surface

Electric, magnetic Hertz potentials

Normalizatien factor i>r radial function
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139

33

161

28

13

33

139

121

29

67

22
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TABLE OF NOTATION{CONT.)

Name of Quantity

Scattering cross section

Geometrical optics scattering cross section

Azimuthal variable

Spheroidal harmonic

Wave function

Angular frequency

221

Defined
On Page

70

90

76

27

27




THE UNIVERSITY OF MICHIGAN

3648-6-T

REFERENCES

Abraham, M. (1898) "Die electrischen Schwingungen um einen stabformigen, Leiter,

behandelt nach der Maxwell'schen Theorie." Annalen der Physik, 66.
pp 435-472,

Belkina, M. G. (1957) "Radiation Characteristics of an Elongated Rotary Ellipsoid, "
Difiraction of Electromagnetic Wr.ves by Some Bodies of Ravolution,
Published by Soviet Radio, Mcscow. (Book in Russian),

Chako, N, {1955) '"On Integral Relations lvolving Products of Spheroidal Functions, '}

New York University Institute of the Mathematical Sciences, Research
Report No. EM-T73,

Chertock, G. (1961) "Sound Rzdiation from Prolate Spheroids," Joursal of the
Acoustical Society of America, 33, No. 7, pp 871-876,

Chu, L. J. and J. A. Stratton (1941) "Steady State Solutions of Electromagnetic Field
Problems, Part IIL" Journal of Applied Physics, 12, pp 241-248,

Crispin, J., R.¥.Goodrich and K.M.Siegel(1959)" A Theoretical Method for the Calcula-
tion oithe Radar Cross Sections of Aircraft and Missiles, '' The University of
Michigan Radiation Laboratory Report No, 2591-1-H, AD-227695.

Crispin, J. W. jr., K. M. Siegel, and F. B. Sleator (1963) "The Resonance

Region," Morograph on Radio Waves and Circuits, S. Silver, Editor,
Elsevier Publishing Cu., pp 11-37.

Deppermann, K., and W, Franz (1454) '""Theorie der Beugung an der Kugel unter

Beriicksichtigung der Kriechwelle,' Annalen der Physik, Folge §, Band 14,
np 255-264,

Eberle, J. W. and R. W. St, Clair (1960) "Echo Areas of Combinations of Cones,
Spheroids and Hemispheres as a Function of Bistatic Angle and Target
Aspect," The Ohio State University Antenna Laboratory Report No. 1073-1,

Eingpruch, N, G., and G. A. Barlow, Jr. (1961) 'Scattering of a Compressional

Wave by a Prolate Spheroid,' Quarterly of Applied Math., 19, No, 3,
pp 253~58.

Flammer, C. (1351) " Prolate Spheroidal Wave Functicns, " Stanford Research
Institute Technical Report No. 16,

222

1(4.'::»(*@9‘:";% L et s
v PR IN

ey &
",qu ki

Lt

ol LR




THE UNIVERSITY OF MICHIGAN ————

3648-6-T

Flammer, C. (1957) Spheroidal Wave Functions, Stanford University Press.

Fock, V. (1946; "The Field of a Plane Wave Near the Surface of a Conducting Body,"
Journal of Physics, 10, No.5, pp 399-.J9.

Franz, W, Z, (1954) "Uber dieGreensche Funktionen des Zylinders und der Kugel, "
Z. furNaturforschung, 9a, pp 705-716,

Galerkin, B. G. (1915), Vestnik Inzhenerov i Tekhnikov,

Goodrich, R, F. (1959) "Fock Theory - An Appraisal and Exposition," IRE Trans.
AP-1, Special Supplement, pp S28-536.

Goodrich, R. F., B. A, Barrison, R, E. Kleinman and T. B. A. Senior (19€1)
"Studies in Radar Cross Sections XLV {i-Diffraction and Scattering by Regu-
lar Bodies-I: The Sphere," The University of Michigan Radiation
Laboratory Report No, 3648-1-T,

Goodrich, R. F., and N, D, Kazarinoff (1963) "Scalar Diffraction by Prolate
Sheroids whose Eccentricities are Almost One," Proc. Camb, Phil. Soc.,
59, pp 167-183.

Goodrich, R. F., N. D. Kazarinoff, and V. H. Weston, (1962) '"Scalar Diffraction
by a Thin Oblate Spharoid," URSI Symposium on Electromagnetic Theory and
Antennas, Copenhagen, Part I, E. C, Jordan, Wditor, Pergamon Press,
pp 27-38.,

Greenberg, J. M. {(1960) "Scattering by Non-Spherical Particles, Journal of
Applied Physics, 31, No. 1, pp 82-84.

Greenberg, J. M., N. F. Pedersen, and J, C. Pedersen (19:;1) "Microwave Analog
to the Scattering of Light by Nonspherical Particles,' Journal of Applied
Physics, 32, No, 2, pp 233-242,

Greenberg, J. M., A. C. Lind, R. T. Wang, and L, F, Libelo (1963 a) ‘The
Polarization of Starlight by Oriented Nonspherical Particles,' Proceedings
of the Interdisciplinary Conierence ¢n Electromagnetic Scattering,

M. Kerker, Editor, Pergamon Press, pp 123-133.

Greenberg, J. M., L. F. Libelo, A, C. Lind, and R, T. Wang (1963b) "Scattering
by Nonspherical Particles whose Size is of the Order of the Wavelengu:, "
URSI Symposium on Electromagnetic Theory and Antennas, Copenhagen,
Part {, E. C, Jordan, Editor, Pergamon Press, pp 81-92.

2223




THE UNIVERSITY OF MICHIGAN
3648-6-T

Hatcher, E. C. and A. Leitner (1954) ""Radiation from a Point Dipole Located at
the Tip of a Prolate Spheroid, "* Journal of Applied Phys cs, 25, pp 1250~
1253,

Hiatt, R. E., K. M. Siegel, and H, Weil (1960) " Forward Scattering by Coated
Objects Illuminated by Short Wavelength Radar," Prouc. of the IRE, 48,
No. 9. pp 1630-1635,

Honda, J. S., S. Silver and F. D. Clapp {1955) "Scattering of Microwaves by
Figures of Revolution,' The University of California Electronics Research
Laboratory, Report No, 232, Issue 60.

Ikeda, Y. (1963) "Extension of the Rayleigh-Gans Theory," Proceedings of the
Interdisciplinary Conference on Elec*romagnetic Scattering, M, Kerker,
Editor, Pergamon Press, pp 47-53.

Islam, M. A, (1963)'Mathematical Analysis of the Effect of a Prulate Spheroidal
Core in a Magnetic Dipole Field," Journal of Mathematical Physics, 4,
No. 9, pp 1206-1212,

Johnson, J. C. (1955) ''Scattering from a Dieleciric Prolate Spheroid," Tufts
College Research Laboratory of Physical Electronics, Scientific Report
No, 3.

Jones, D. S, (1956) "A Critigue of the Variational Method in Scattering Problems, "
IRE TrallS. éP-4‘ Nlan 30 pp 297-301,

Jones, D. & (1957) "High-Frequency Scattering of Electromagnetic Waves,' Froc.
of Royal Society, A, 240, pp 206-213.

Justice, R. (1956) "Scattering by a Small Conducting Prolate Spheroid," The
Ohio State University Antenna Laboratory, Report No. 678-2.

Kazarinoff, N. D, and R. K. Ritt (1959a) "On the Theory of Scalar Diffraction and
Its Application to the Prolate Spheroid,'" Annals of Physics, 6 No, 3,
pp 277-299,

Kazarinoff, N. D, and R. K. Ritt (1959b) "Scalar Diffraction by an Eiliptic Cylinder
IRE Trans., AP-7, pp 521-27,

224




oy

—— ey

THE UNIVERSITY OF MICHIGAN

3648-6-T

Kleinman, R. E. and T. B. A. Senior (1963) "Studies in Radar Cross Section XL VIII
Diffraction and Scattering by Regular Bodies-IE: The Cone, '"The University
of Michigan Radiation Laboratory Keport 3648-2-T.,

Kraus, J. D. (1950) Antennas, McGraw-Hill Book Co., N. Y,

Kouyoumjian, R. G., L. Peters, Jr., and D. T. Thomas (1963) "A Modified
Geometric Optics Method for Scattering by Dielectric Bodies," IRE Irans,
AP-11, No, 6, pp 696-703,

Langer, R, E. {1935) "On The Asymptotic Solutions of Ordinary Differential
Equations, with Referenceto Stokes' Phenomenon about a Singular Point, "
Tra»s, American Math, Society 37, pp 397-416,

Levy, B. R. and J. B. Kelier (1960) "Diffraction by a Spheroid, " Canadian Journal
of Physics, 38, pp 128-144,

Mathur, P. M. and E. A. Mueller (1956) "Radar Back-Scattering Cross Sections for
Non-Spherical Targets,'" IRE Trans. AP-4 , No. l,pp S1-53.

McKelvey, R. W, (1959) "Solution about a Singular Point of a Linear DNifferential
Equation Involving & Large Parameter," Trans. American Math. Society 91,
pp 410-424,

Meixner, J. and F. Schafke (1954) Mathieusche Funktionen and Sphiroidfunktionen,
Springer-Verlag, Berlin,

Montroll, E. W, and R. W. Hart (1951) "Scattering of Plane Waves by Soft
Obstacles II - Scattering by Cylinders, Spheroids, and Disks,' Journal of
Applied Physics, 22, No, 10, pp 1278-1289,

Morse, P, M. and H. Feshbach (1953) Methods of Theoietical Physics, McGraw-
Hill Book Co., N. Y,

Mushiake, Y. (1956 '"Backscattering for Arbitrary Angles of Incidence of a Plane
EM Wave on a Perfectly Conducting Spheroid with Small Eccentricity, "
Journal of Applied Physics, 27, pp 1549-1556,

Myers, H. A. (1956) "Readiation Patterns of Unsymmetrically Fed Prolate Spheroidal
Antennas, " IRE Trans, AP-4, no. 1 pp 58 - 64,

Olte, A. and S, Silver (1959) "New Results on Back Scattering from Cones and
Spheroids," IRE Trans, AP-7, Special Supplement, pp S61 - S67

295 j




THE UNIVERSITY OF MICHIGAN

3648-6-T

Page, L. and N, L J. Adams (1938) "The Electrical Oscillations of a Prolate
Spheroid, Paper L' Physical Review, 53, pp 818-831.

Page, L. (1944a) "The Electrical Oscillations of a Prolate Spheroid,Paper II,
Physical Review, 65, pp 98-110,

Page, L. (1944b) "The Elecirical Oscillations of a Prolate Spheroid, Paper I "
Physical Review, 65, pp 111-117,

Phillips, R. S, (1952) "Linear Ordirary Differential Operators of the Second Order, '
New York University Institute of the Mathematical Sciences, Research Report
EM -42,

Rabinowitz, S. J. (1956) '"On the Validity of Fock's Approximation for the Surface
Currents Induced by a Plane Wave," The Johns Hopkins 'Jniversity Radiation
Laboratory Repzrt TR-32,

Rayleigh, J.W. S, (1897) "On the Incidence of Aerial and Electromagnetic Waves
on Small Obstacles," Phil, Magazine, 44, pp 28-52,

Reitlinger, N. (1957) "Scattevring of a Plane Wave Incident On a Prolate Spheroid at
an Arbitrary Angle, '"The University of Michigan Radiation Laboratory,
Unpublished Memo 2686-506 -M,

Ritter, E. K. (1956) "Solution of Problems in E-M Wave Theory on a High-Speed
Digital Calculating Machine,'" IRE Trans., AP-4. No. 3 pp 276-281,

Ryder, R. M. (1942) "The Electrical Oscillations of a Perfectly Ccnducting Prolate
Spheroid, ' Journal of Applied Physics, 13, pp 327-343,

Schiff, L. L ( 1956) "Approximate Method for High-Energy Potential Scattering, "
Phys. Review, 103 No. 2. pp 443-453,

Schultz, F. V. (1950) "Scattering by a Prolate Spheroid," The University of Michiga:
Willow Run Researcn Center, Report No. UMM-42,

Senior, T, B. A, (1961) "The Convergence of Low Frequency Expansions in Sealar
Scattering by Spheroids,' The University of Michigan Radiation Laboratory,
Report 3648-4-T,

Senior, T. B. A. (1964) "Low Frequency Scattering by a Spheroid," Tc be published,

226

5 S ARSI SO o0k S Ak B4 S L




BT R LGS
P S ATy
“L{} AR <
IR A

oL

A%

oy

TR T

K
P b

.~'u¢7;‘%

AL
Nﬂ‘

o

gt e S A
R SR b 4

vl

4

840

P T

Lot st \
S st

Pt .
PERRCE A" g

re
e~

OV T

b

THE UNIVERSITY OF MICHIGAN —m
3643-6-T

Shatilov, A.V. (1960a) ""On the Scattering of Light by Dielectric Ellipsoids Comparable
with the Wavelength-1," Optics and Spectroscopy, IX, No.l, pp. 44-47,

Shatilov, A.V. (1960b) "On the Scattering of Light by Dielectric Ellipscids Comparable
with the Wavelength-11," Optics and Spectroscopy, IX, No.2, pp.123-127,

Siegel, K. M., B.H.Gere, 1.Marx and F.B.Sleator (1953) "The Numerical Determination
of the Radar Cross Section of a Prolate Spheroid," The University of Michigan
Willow Run Research Center Report No, UMM-126,

Siegel, K.M. , H.A Alperin,R.R.Bonkowski, J.W.Crispin, A.L.Maffett, C.E.Schensted
and 1.V.Schensted (1955a) ""Bistatic Radar Cross Sections of Bodies of
Revolution," Journal of Applied Physics, 26, No. 3, pp.297-305.

Siegel, K.M., J.W.Crispin, and C.E. Schensted {1955h) '"Electromagnetic and Acous-
tical Scattering from a Semi-Infinite Cone," Journal of Applied Physics, 26,
No. 3, pp. 309-313.

Siegel, K.M., F.V.Schultz, B.H.Gere and F.B.Sleator (1956) "The Theoretical and
Numerical Determination of the Radar Cross Section of a Prolate Spheroid,"

IRE Trans., AP-4, No. 3, pp.266-275.

Siegel, K.M. (1959) "Far Field Scatte ring from Bodies of Revolution," Applied
Scientific Research, Sec.B., 7, pp.293-328.

Silbiger, A. (19R1 "Asymptotic Formulas and Computational Methods for Sphereidal
Wave Functions,' Cambridge Acoustical Associates, Inc, , Report No, U-123-48,

Silver, S. (1945) Microwave Antenna Theory and Design, McGraw-Hill Book Company,

} Sims, A.R. (1957) "Secondary Conditions for Linear Differential Operators of the
Second Order,' Journal of Mathematics and Mechanics, 6, wp.247-285,

Sleator, F.B. and B.Ullman (1959) "'Scalar Scattering by a Rigid Spheroid of Small
Eccentricity with Symmetrical [ncidence," The University of Michigan Radia-
tion Laboratory unpublished memorandum No, 2952-501-M.

Sleator, F.B. (1959) "Rayleigh Scattering by a 10:1 Prolate Spheroid," The University
of Michigan Radiation Laboratory unpublished memorandum Neo, 2952-502-M.,




T

l—-—— THE UNIVERSITY OF MICHIGAN

3648-6-T

Sleator, F., (1960) "A Variational Solution to the Problem of Scalar Scattering by a
Prolate Spheroid,'" Journal of Mathematics and Physics, XXXIX, No. 2,
pp 105"120.

Sommerfeld, A. (1949) Partial Differential Equations in Physics, Academic Press.
N. Y.

Spence, R. D. {(1951) "The Scattering of Sound from Prolate Spheroids, Final
Report," Contract NONR-02400,

Spence, R. D. and S, Granger (1951) "The Scattering of Sound from a Prolate
Spheroid,”" Journal of the Acoustical Soc. of America, 23, No. 6, pp 701-
706,

Stevenson, A. F. (1953a) '*Solution of Electromagnetic Scattering Problems as
Power Series in the Ratio (Dimension of Scatterer)/ Wav2length," Journal of

Applied Physics, 24, No. 9, pp 1134-1142,

Stevenson, A, F. (1953b) "Electromagnetic 3cattering by an Ellipsoid in the Third
Approximation, " Journal of Appliet Physics, 24, No. 9. pp 1143-1151.

Stratton, J. A. (1941) Electromagnetic Theory, McGraw-i{ill Book Co., N. Y.

Stratton, J. A., P.M. Morse, L. J. Chu and R. A. Hutner (1941) Elliptic Cylinder
and Spheroidal Wave Functions, John Wiley and Sons, N. Y.

Stratton, J. A., P, M. Morse, L. J. Chu, J. D. C. Little, and F. J. Corbatg{1956)
Spheroidal Wave Functions, The Technology Press, Cambridge, Mass,

Tai, C. T. (1952; ‘Electromagnetic Back-Scattering from Cylindrical Wires,"
Journal of Applied Physics, 23, pp 906-916.

Thomas, D. T. (1962) "*Scattering by Plasma and Dielectrvic Bodies," The Ohio
State University Antenna Laboratory, Report No, 1116-20,

Van De Hulst (1957) Light Scattering by Small Particles, John Wiley and Sons. N.Y.

Weeks, W, 1., (1958) "Dielectric Ceated Spheroidal Radiators,' The University of
Iliinois EE Research Laboratory, Technical Report No. 34.

228




THE UNIVERSITY OF MICHIGAN
3648-6-T

Weeks, W, L. (1959) "*Prolate Spheroidal Wave Functions for Electromagnetic
Theory," The University of Illinois EE Research Laboratory, Technical
Report No. 38.

Yeh, C. W. H, {(1963a) "The Diffraction of Waves by a Peretrable Ribbon,' Journal
of Mathematical Physics, 4, No, 1, pp 65-71,

Yeh, C. W. H. (1963b) "On the Dielectric Coated Prolate Spheroidal Antenna,"
Journal of Mathemsticg and Physics, XLII No. 1, pp 68-77,

229




